Embedded System Design
(R22D6802)

DIGITAL NOTES

M.TECH
(1 YEAR - I SEM)
(2023-24)

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliatedto INTUH, Hyderabad, Approved by AICTE - Accredited by NBA&NAAC - ‘A’ Grade -1ISO9001:2015 Certified)
Maisammaguda, Dhulapally (PostVia. Kompally), Secunderabad—-500100, TelanganaState, India

A, CITADEL OF, LEARNING,

[5; i
o R :

\H—'\“P-l‘iil

EMBEDDED SYSTEM DESIGN
Course Objectives:

Discuss the basic principles of ARM system design.
Identify the major hardware components ARM data path architecture.

Identify the design issues ARM based embedded system with the basic knowledge of

firmware, embedded OS & ARM architectures.
Analyze the execution of instructions/program knowing the basic principles of ARM

architecture and assembly language.
Compare programs written in C & assembly to execute on ARM platform.

UNIT -I:
ARM Architecture:

ARM Design Philosophy, Registers, Program Status Register, Instruction Pipeline, Interrupts and
Vector Table, Architecture Revision, ARM Processor Families.

UNIT -II:
ARM Programming Model - I:

Instruction Set: Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions,
PSR Instructions, Conditional Instructions.

UNIT —lIlI:
ARM Programming Model - Il:

Thumb Instruction Set: Register Usage, Other Branch Instructions, Data Processing Instructions,
Single-Register and Multi Register Load-Store Instructions, Stack, Software Interrupt Instructions

UNIT -IV:
ARM Programming:

Simple C Programs using Function Calls, Pointers, Structures, Integer and Floating Point Arithmetic,
Assembly Code using Instruction Scheduling, Register Allocation, Conditional Execution and Loops.

UNIT -V:

Memory Management:

Cache Architecture, Polices, Flushing and Caches, MMU, Page Tables, Translation, Access
Permissions, Context Switch.

TEXT BOOKS:

1. ARM Systems Developer’s Guides- Designing & Optimizing System Software — Andrew N.
Sloss, Dominic Symes, Chris Wright, 2008, Elsevier.
2. Professional Embedded ARM development-James A Langbridge, Wiley/Wrox

REFERENCE BOOKS:

1. Embedded Microcomputer Systems, Real Time Interfacing —Jonathan W. Valvano — Brookes
/ Cole, 1999, Thomas Learning.
2.ARM System on Chip Architecture, Steve Furber, M Edition, Pearson

Course Outcomes:

Become aware of the ARM Processor, Architecture, Registers, Instruction pipeline, Interrupts
and Instructions, Addressing modes and conditional instructions.

Apply and analyze the applications in various processors and domains of embedded system.
Ability to use advanced controllers using thumb instruction for embedded system design.
Analyze and develop embedded hardware and software development cycles and tools.

Understanding the concept of Memory management unit, integration methods and
hardwareand software design concepts associated with processor in Embedded Systems.

UNIT-I
ARM ARCHITECTURE

ARM

ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family
of Reduced Instruction Set Computing (RISC) Architecture for Computer Processors.

The ARM processor core is key component of many successful 32-bit embedded
systems.

The RISC design philosophy

The design philosophy aimed at delivering the following.

simple but powerful instructions
single cycle execution at a high clock speed
intelligence in software rather than hardware

Provide greater flexibility on reducing the complexity of instructions.

The ARM core uses RISC architecture.

The RISC philosophy is implemented with four major design rules:

1.

Instructions — RISC processors have areduced number of instruction classes. These
classes provide simple operations that can each execute in a single cycle. The compiler or
programmer synthesizes complicated operations (a divide operation) by combining
several simple instructions. Each instruction is a fixed lengthto allow the pipeline to
fetch future instructions before decoding the current instruction. In contrast, in CISC
processors the instructions are often of variable size and take many cycles to execute.

Pipelines —The processing of instructions is broken down into smaller units that can be
executed in parallel by pipelines. Ideally the pipeline advances by one step on each cycle
for maximum throughput. There is no need for an instruction to be executed by a mini
program called microcode as on CISC processors.

Registers—RISC machines have a large general-purpose register set. Any register can
contain either data or an address. In contrast, CISC processors have dedicated registers
for specific purposes.

4. Load-store architecture--The processor operates on data held in registers. Separate load
and store instructions transfer data between the register bank and external memory. In
contrast, with a CISC design the data processing operations can act on memory directly.

The ARM Design Philosophy

There are a number of physical features that have driven the ARM processor design.

1. Small to reduce power consumption and extend battery operation
2. High code density
3. Price sensitive and use slow and low-cost memory devices.
4. Reduce the area of the die taken up by the embedded processor.
5. Hardware debug technology
6. ARM core is not a pure RISC architecture

Registers:

ARM processors provide general-purpose and special-purpose registers. Some additional
registers are available in privileged execution modes.

In all ARM processors, the following registers are available and accessible in any processor
mode:

= 13 general-purpose registers RO-R12.
= One Stack Pointer (SP).

= One Link Register (LR).

= One Program Counter (PC).

= One Application Program Status Register (APSR).

The amount of registers depends on the ARM version. According to the ARM Reference
Manual, there are 30 general-purpose 32-bit registers, with the exception of ARMv6-M and
ARMvV7-M based processors. The first 16 registers are accessible in user-level mode, the
additional registers are available in privileged software execution (with the exception of
ARMvV6-M and ARMvV7-M). In this tutorial series we will work with the registers that are
accessible in any privilege mode: r0-15. These 16 registers can be split into two groups: general
purpose and special purpose registers.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473c/Babdfiih.html

Privileged Modes
| Exception Modes
|-.. -
User System Supervisor Abort Undefined Interrupt Fast interrupt
) ri)
ri rl
r2 r2
r3 r3
r4 rd
] ry
o rt
r7 r7
r8 r8 r8_fig
r9 r9 r9_fig
ri rl0 ri0_fig
ril rll ril_fig
ri2 rl2 ri2_fig
ri3 sp ri3sp ri3_sve ri3_abt ri3_und ri3_irg ri3_fig
rid Ir rldlir ri4_sve ri4_abt ri4_und rl4_irg ri4_fig
ris pc rls pe
cpsr cpsr
- - Spsr_sve | | spsr_abt | | spsr_und | | spsr_irg | | spsr_fig |
|:| Banked register

R0-R12: can be used during common operations to store temporary values, pointers (locations to
memory), etc. RO, for example, can be referred as accumulator during the arithmetic operations
or for storing the result of a previously called function. R7 becomes useful while working with
syscalls as it stores the syscall number and R11 helps us to keep track of boundaries on the stack
serving as the frame pointer (will be covered later). Moreover, the function calling convention on
ARM specifies that the first four arguments of a function are stored in the registers r0-r3.

R13: SP (Stack Pointer). The Stack Pointer points to the top of the stack. The stack is an area of
memory used for function-specific storage, which is reclaimed when the function returns. The
stack pointer is therefore used for allocating space on the stack, by subtracting the value (in
bytes) we want to allocate from the stack pointer. In other words, if we want to allocate a 32 bit
value, we subtract 4 from the stack pointer.

R14: LR (Link Register). When a function call is made, the Link Register gets updated with a
memory address referencing the next instruction where the function was initiated from. Doing
this allows the program return to the “parent” function that initiated the “child” function call
after the “child” function is finished.

R15: PC (Program Counter). The Program Counter is automatically incremented by the size of
the instruction executed. This size is always 4 bytes in ARM state and 2 bytes in THUMB mode.

When a branch instruction is being executed, the PC holds the destination address. During
execution, PC stores the address of the current instruction plus 8 (two ARM instructions) in
ARM state, and the current instruction plus 4 (two Thumb instructions) in Thumb(v1) state. This
is different from x86 where PC always points to the next instruction to be executed.

Current Program Status Register

The Current Program Status Register (CPSR) holds the same program status flags as the APSR,
and some additional information.

The CPSR holds:
= The APSR flags.
= The processor mode.
= The interrupt disable flags.
= The instruction set state (ARM, Thumb, ThumbEE, or Jazelle®).
= The endianness state (on ARMvAT and later).

= The execution state bits for the IT block (on ARMv6T2 and later).

Condition Code Flags (Reserved) Control Bits
[| [| [|
31 30 20 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N Z (& Vv I F T | M4 | M3 | M2 | M1 | MO
lss I T
Queriae L mode bits
Carry/Borrow/Extend State bit
i FIQ disable
W
Negative/Less Than IRQ disable

The Current Program Status Register is a 32-bit wide register used in the ARM architecture to
record various pieces of information regarding the state of the program being executed by the
processor and the state of the processor. This information is recorded by setting or clearing
specific bits in the register.

The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits and are of most interest
to us. Condition code bits are sometimes referred to as "flags”. The lowest 8 bits (bit 7 through to
bit 0) store information about the processor's own state. The remaining bits (i.e. bit 27 to bit 8)
are currently unused in most ARM processors.

The N bit is the "negative flag" and indicates that a value is negative.
The Z bit is the “zero flag" and is set when an appropriate instruction produces a zero result.

The C bit is the "carry flag" but it can also be used to indicate "borrows" (from subtraction
operations) and "extends" (from shift instructions (LINK)).

The V bit is the "overflow flag" which is set if an instruction produces a result that overflows and
hence may go beyond the range of numbers that can be represented in 2's complement signed
format.

For completeness, the other state bits are:

The | and F bits which determine whether interrupts (such as requests for input/output) are
enabled or disabled.

The T bit which indicates whether the processor is in "Thumb" mode, where the processor can
execute a subset of the assembly language as 16-bit compact instructions. As Thumb code packs
more instructions into the same amount of memory, it is an effective solution to applications
where physical memory is at a premium.

The M4 to MO bits are the mode bits. Application programs normally run in user mode (where
the mode bits are 10000). Whenever an interrupt or similar event occurs, the processor switches
into one of the alternative modes allowing the software handler greater privileges with regard to
memory manipulation.

M[4:0] | Mode Accessible registers

10000 | User PC, R14 to RO, CPSR

10001 FIQ PC, R14_fig to R8_fig, R7 to RO, CPSR, SPSR_fiq
10010 IRQ PC, R14 irq, R13 irg, R12 to RO, CPSR, SPSR _irq
10011 | Supervisor | PC, R14 svc, R13 svc, R12 to RO, CPSR, SPSR_svc
10111 Abort PC, R14_abt, R13 abt, R12 to RO, CPSR, SPSR_abt

11011 ' Undefined | PC, R14 und, R13 und, R12 to RO, CPSR, SPSR_und
11111 System PC, R14 to RO, CPSR

The instruction pipeline

The ARM uses a pipeline to increase the speed of the flow of instructions to the processor. This
allows several operations to take place simultaneously, and the processing, and memory systems
to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

e Fetch

e« Decode
o EXxecute.

The three-stage pipeline is shown in

Fetch Instruction fetched from memory
Decoding of registers used in
Decode instruction

Registern(s) read from register bank
Execute Shift and ALU cperation
Write registen(s) back to register bank

The instruction pipeline

During normal operation, while one instruction is being executed, its successor is being decoded,
and a third instruction is being fetched from memory. The program counter points to the
instruction being fetched rather than to the instruction being executed. This is important because
it means that the Program Counter (PC) value used in an executing instruction is always two
instructions ahead of the address.

E] Fetch]—'{}Decude)—-{}Exemte)—-ﬂl{emnr}’)—-ﬂ Write)

ARMY five-stage pipeline.

[] Fetch]—'{} Issue H}Decude H}ExemteH]l-’IemnryH] Write }

ARMI10 six-stage pipeline.

The pipeline design for each ARM family differs. For example, The ARM9 core increases the
pipeline length to five stages, as shown in Figure 2.9. The ARM9 adds a memory and writeback
stage, which allows the ARM9 to process on average 1.1 Dhrystone MIPS per MHz—an
increase in instruction throughput by around 13% compared with an ARM7. The maximum core
frequency attainable using an ARM9 is also higher.

The ARM10 increases the pipeline length still further by adding a sixth stage, as shown in Figure
2.10. The ARM10 can process on average 1.3 Dhrystone MIPS per MHz, about 34% more
throughput than an ARM7 processor core, but again at a higher latency cost.

Even though the ARM9 and ARM10 pipelines are different, they still use the same pipeline
executing characteristics as an ARM7. Code written for the ARM7 will execute on an ARM9 or
ARM10.

Interrupts and the Vector Table.

When an exception or interrupt occurs, the processor sets the pc to a specific memory address.
The address is within a special address range called the vector table. The entries in the vector
table are instructions that branch to specific routines designed to handle a particular exception or
interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit words. On
some processors the vector table can be optionally located at a higher address in memory
(starting at the offset Oxffff0000). Operating systems such as Linux and Microsoft’s embedded
products can take advantage of this feature.

When an exception or interrupt occurs, the processor suspends normal execution and starts
loading instructions from the exception vector table (see Table 2.6). Each vector table entry
contains a form of branch instruction pointing to the start of a specific routine:

Reset vector is the location of the first instruction executed by the processor when power is
applied. This instruction branches to the initialization code.

Undefined instruction vector is used when the processor cannot decode an instruction.

Software interrupt vector is called when you execute a SWI instruction. The SWI instruction is
frequently used as the mechanism to invoke an operating system routine.

Prefetch abort vector occurs when the processor attempts to fetch an instruction from an address
without the correct access permissions. The actual abort occurs in the decode stage.

Data abort vector is similar to a prefetch abort but is raised when an instruction attempts to
access data memory without the correct access permissions.

Interrupt request vector is used by external hardware to interrupt the normal execution flow of
the processor. It can only be raised if IRQs are not masked in the cpsr.

The vectortable.

Exception/interrupt Shorthand Address High address
Reset RESET 0x00000000 0xffff0000
Undefined instruction UNDEF 0x00000004 0xffff0004
Software interrupt SWiI 0x00000008 Oxffff0008
Prefetch abort PABT 0x0000000c Oxffff000c
Data abort DABT 0x00000010 Oxffff0010
Reserved — 0x00000014 Oxffff0014
Interrupt request IRQ 0x00000018 Oxffff0018
Fast interrupt request FIQ 0x0000001c Oxffff001c

Architecture Revision

Every ARM processor implementation executes a specific instruction set architecture (ISA),
although an ISA revision may have more than one processor implementation.

The ISA has evolved to keep up with the demands of the embedded market. This evolution has
been carefully managed by ARM, so that code written to execute on an earlier architecture
revision will also execute on a later revision of the architecture.

Before we go on to explain the evolution of the architecture, we must introduce the ARM
processor nomenclature. The nomenclature identifies individual processors and provides basic
information about the feature set.

Nomenclature

ARM uses the nomenclature shown in below Figure to describe the processor implemen- tations.
The letters and numbers after the word “ARM” indicate the features a processor

ARM{XHYHZHTHDHMHIHEHIHFH-S}

x—Tfamily y—memory management/protection unit
z—cache T—Thumb 16-bit decoder
D—JTAG debug M—fast multiplier

|—EmbeddedICE macrocell E—enhanced instructions (assumes TDMI)

J—Jazelle F—uvector floating-point unit
S—synthesizible version

may have. In the future the number and letter combinations may change as more features are
added. Note the nomenclature does not include the architecture revision information.

There are a few additional points to make about the ARM nomenclature:

' All ARM cores after the ARM7TDMI include the TDMI features even though they may
not include those letters after the “ARM” label.

' The processor family is a group of processor implementations that share the same
hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share
the same family characteristics and belong to the ARM7 family.

" JTAG is described by IEEE 1149.1 Standard Test Access Port and boundary scan archi-
tecture. It is a serial protocol used by ARM to send and receive debug information between the
processor core and test equipment.

" EmbeddedICE macrocell is the debug hardware built into the processor that allows
breakpoints and watchpoints to be set.

" Synthesizable means that the processor core is supplied as source code that can be
compiled into a form easily used by EDA tools.

Architecture Evolution

The architecture has continued to evolve since the first ARM processor implementation was
introduced in 1985. Significant architecture enhancements from the original architecture version

1 to the current version 6 architecture. One of the most significant changes to the ISA was the
introduction of the Thumb instruction set in ARMv4T (the ARM7TDMI processor).

The various parts of the program status register and the availabil- ity of certain features on
particular instruction architectures. “All” refers to the ARMv4 architecture and above.

ARM PROCESSOR FAMILIES
ARM has designed a number of processors that are grouped into different families according to

the core they use. The families are based on the ARM7, ARM9, ARM10, and ARM11 cores. The
postfix numbers 7, 9, 10, and 11 indicate different core designs. The ascending number equates

to an increase in performance and sophistication. ARM8 was developed but was soon
superseded.

Table 2.9 shows a rough comparison of attributes between the ARM7, ARM9, ARM10, and
ARM11 cores. The numbers quoted can vary greatly and are directly dependent upon the type
and geometry of the manufacturing process, which has a direct effect on the frequency (MHz)
and power consumption (watts).

Revision history.

Revision Example core implementation I3A enhancement
ARMv1 ARMI First ARM processor
26-hit addressing
ARMvVZ ARMZ 32-bit multiplier
32-hit coprocessor support
ARMv2a ARM3 Cm-chip cache

Atomic swap instruction
Coprocessor 15 for cache management
ARMv3 ARMG and ARMTDI 32-hit addressing
Separate gnsr and spsr
New modes—undefined mstruction and aborf
MMU support—virtual memory
ARMv3M ARMTM Signed and unsipned long multiply instructions
ARMw StroneAEM Load-store instructions for simned and unsigned
hatfmords) bytes
New mode—sysfem
Reserve SWI space for architecturally defined
operations
26-bit addressing mode no longer supported
ARMvAT ARMTTDMI and ARMST Thumb
ARMVSTE AFMSE and ARMI10E Superset of the ARMv4T
Extra instructions added for chanping state between
AFM and Thumb
Enhanced multiply instructions
Extra DSP-type instructions
Faster multiply accumulate
AFMvSTEJ ARMYEJ and ARM9I6EJ Java acceleration
ARMvE AFMI11 Improved multiprocessor instructions
Unalipned and mixed sndian data handling
New multimedia instructions

Within each ARM family, there are a number of variations of memory management, cache, and
TCM processor extensions. ARM continues to expand both the number of families available and
the different variations within each family.

You can find other processors that execute the ARM ISA such as StrongARM and XScale. These
processors are unique to a particular semiconductor company, in this case Intel.

Table 2.10 summarizes the different features of the various processors. The next subsections
describe the ARM families in more detail, starting with the ARM7 family.

Description of the gpsr.

Parts Bits Architectures Description
Maode 410 all processor mode
T 5 ARMvAT Thumb state
I&F 76 all mterrupt masks
T 24 ARMvSTEJ Jazelle state
o 27 ARMvSTE condition flag
V 28 all condition flag
[9 all condition flag
Z 30 all condition flag
N 31 all condition flag
ARM family attribute comparison.
ARMT ARMS ARMI1O ARMI11

Pipeline depth thres-stage five-stapge six-stage eight-stage
Typical MHz B0 150 260 33c
mW,/ MHz"® 006 mW/MHz 0.9 mW/MHz 05 mW/MHz 04mW/MHz

_ [+ cache) [+ cache) [+ cache)
MIPS® /M Hz 097 11 13 12
Architecture Von Neumann Harvard Harvard Harvard
Multiplier Bx 32 Bx 32 16 = 32 16 = 32

2Watts/MHz on the sams (.13 mivon proce

3]‘.!]]:'5 ara Dhrystone WAX MIPS.

ARM7 Family

The ARMY core has a Von Neumann-style architecture, where both data and instructions use the
same bus. The core has a three-stage pipeline and executes the architecture ARMVAT instruction
set.

The ARM7TDMI was the first of a new range of processors introduced in 1995 by ARM. It is
currently a very popular core and is used in many 32-bit embedded processors. It provides a very
good performance-to-power ratio. The ARM7TDMI processor core has been licensed by many
of the top semiconductor companies around the world and is the first core to include the Thumb
instruction set, a fast multiply instruction, and the EmbeddedICE debug technology.

ARM processot variants.

CPU core MMU/ M PU Cache Jagglle Thumb ISA E®
ARMTTDMI none none no ¥ES vaT no
ARM7EJ-3 none none yES yES vSTEJ Ves
ARMT20T MMU unified —BE cache no yEs vAT no
ARMS20T MM 5 E— + i o] AT il
?E:ﬂ% 16K /16K D+1 no ¥ v 10
ARMS22T MU + nao yES vaT na
sega%zate—ﬂl':f B D+ 1T]
ARMS2EEJ-3 MMU separate—cache and yES yES vITEJ v
TCM:= confipurable
ARMS40T MPU oz te—AK/AK D+ T 10 yEs T hils)
e
ARMS46E-5 MPU separate—cache and no yES v5TE 7=
TCMs confipurable
ARMSEEE-S none separate—TCMs no yES vaTE Ves
confipurable
ARMI10Z0E MM oz te—37K/I0K D+] o yEs voIE ¥es
ARMI10Z22E MM & a— 1 no ¥ES volE V25
;@%’fﬁv 16K/16K D+ []]
ARMI0ZE6EJ-5 MMU and separate—cache and yEs yEs vSTE vEs
MPU TCMs confipurable
ARM1136J-5 MMU separate—cache and = = Ve T2
TCM=s ::ur.} Ruragle
AFMI1138JF-3 MM separate—cache an yes yes vB yes

TCMs confisurable
*Eextension provides enhanced multiply metructions and ssturation.

One significant variation in the ARM7 family is the ARM7TDMI-S. The ARM7TDMI-S has the
same operating characteristics as a standard ARM7TDMI but is also synthesizable. ARM720T is
the most flexible member of the ARM7 family because it includes an MMU. The presence of the
MMU means the ARM720T is capable of handling the Linux and Microsoft embedded platform
operating systems. The processor also includes a unified 8K cache. The vector table can be
relocated to a higher address by setting a coprocessor 15 register.

Another variation is the ARMT7EJ-S processor, also synthesizable. ARM7EJ-S is quite different
since it includes a five-stage pipeline and executes ARMV5TEJ instructions. This version of the
ARMTY is the only one that provides both Java acceleration and the enhanced instructions but
without any memory protection.

ARM9 FAMILY

The ARM9 family was announced in 1997. Because of its five-stage pipeline, the ARM9
processor can run at higher clock frequencies than the ARM7 family. The extra stages improve
the overall performance of the processor. The memory system has been redesigned to follow the
Harvard architecture, which separates the data D and instruction | buses.

The first processor in the ARM9 family was the ARM920T, which includes a separate D I cache
and an MMU. This processor can be used by operating systems requiring virtual memory
support. ARM922T is a variation on the ARM920T but with half the D | cache size.

The ARMO940T includes a smaller D | cache and an MPU. The ARM940T is designed for
applications that do not require a platform operating system. Both ARM920T and ARM940T
execute the architecture v4T instructions.

The next processors in the ARM9 family were based on the ARM9E-S core. This core is a
synthesizable version of the ARM9 core with the E extensions. There are two variations: the
ARMO46E-S and the ARM966E-S. Both execute architecture V5TE instructions. They also
support the optional embedded trace macrocell (ETM), which allows a developer to trace
instruction and data execution in real time on the processor. This is important when debugging
applications with time-critical segments.

The ARMO946E-S includes TCM, cache, and an MPU. The sizes of the TCM and caches are
configurable. This processor is designed for use in embedded control applications that require
deterministic real-time response. In contrast, the ARM966E does not have the MPU and cache
extensions but does have configurable TCMs.

The latest core in the ARM9 product line is the ARM926EJ-S synthesizable processor core,
announced in 2000. It is designed for use in small portable Java-enabled devices such as 3G
phones and personal digital assistants (PDAs). The ARM926EJ-S is the first ARM processor
core to include the Jazelle technology, which accelerates Java bytecode execution. It features an
MMU, configurable TCMs, and D I caches with zero or nonzero wait state memories.

ARM10 Family
The ARM10, announced in 1999, was designed for performance. It extends the ARM9 pipeline

to six stages. It also supports an optional vector floating-point (\VFP) unit, which adds a seventh
stage to the ARM10 pipeline. The VFP significantly increases floating-point performance and is
compliant with the IEEE 754.1985 floating-point standard.

The ARM1020E is the first processor to use an ARMI10E core. Like the ARMOE, it includes the
enhanced E instructions. It has separate 32K D | caches, optitnal vector floating-point unit, and
an MMU. The ARM1020E also has a dual 64-bit bus interface for increased performance.

ARM1026EJ-S is very similar to the ARM926EJ-S but with both MPU and MMU. This
processor has the performance of the ARM10 with the flexibility of an ARM926EJ-S.

ARM11 Family
The ARM1136J-S, announced in 2003, was designed for high performance and power- efficient

applications. ARM1136J-S was the first processor implementation to execute architecture
ARMV6 instructions. It incorporates an eight-stage pipeline with separate load- store and

arithmetic pipelines. Included in the ARMV6 instructions are single instruction multiple data
(SIMD) extensions for media processing, specifically designed to increase video processing
performance.

The ARM1136JF-S is an ARM1136J-S with the addition of the vector floating-point unit for fast
floating-point operations.

Specialized Processors

StrongARM was originally co-developed by Digital Semiconductor and is now exclusively
licensed by Intel Corporation. It is has been popular for PDAs and applications that require
performance with low power consumption. It is a Harvard architecture with separate D | caches.
StrongARM was the first high-performance ARM processor to include a five-stage pipeline, but
it does not support the Thumb instruction set.

Intel’s XScale is a follow-on product to the StrongARM and offers dramatic increases in
performance. At the time of writing, XScale was quoted as being able to run up to 1 GHz.
XScale executes architecture V5TE instructions. It is a Harvard architecture and is similar to the
StrongARM, as it also includes an MMU.

SC100 is at the other end of the performance spectrum. It is designed specifically for low-power
security applications. The SC100 is the first SecurCore and is based on an ARM7TDMI core
with an MPU. This core is small and has low voltage and current requirements, which makes it
attractive for smart card applications.

UNIT-II

ARM Programming Model - |

ARM instructions process data held in registers and only access memory with load and store
instructions. ARM instructions commonly take two or three operands. For instance the ADD
instruction below adds the two values stored in registers rl and r2 (the source registers). It writes
the result to register r3 (the destination register).

. Destination
Instruction st Source Source
Syntax re(g;il)er register 1 (Rn) | register 2 (Rm)

ADD r3, rl, r2 r3 rl r2

In the following sections we examine the function and syntax of the ARM instructions by
instruction class—data processing instructions, branch instructions,

load-store instructions, software interrupt instruction, and program status register instructions.

Data Processing Instructions

The data processing instructions manipulate data within registers. They are move instruc- tions,
arithmetic instructions, logical instructions, comparison instructions, and multiply instructions.
Most data processing instructions can process one of their operands using the barrel shifter.

If you use the S suffix on a data processing instruction, then it updates the flags in the cpsr. Move
and logical operations update the carry flag C, negative flag N, and zero flag Z. The carry flag is
set from the result of the barrel shift as the last bit shifted out. The N flag is set to bit 31 of the
result. The Z flag is set if the result is zero.

Move Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where N is a
register or immediate value. This instruction is useful for setting initial values and transferring
data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV | Move a 32-bit value into a register Rd=N

MVN move the NOT of the 32-bit value into a Rd=-N
register

Gives a full description of the values allowed for the second operand N for all data processing
instructions. Usually it is a register Rm or a constant preceded by #.

Barrel Shifter

MOV instruction where N is a simple register. But N can be more than just a register or
immediate value; it can also be a register Rm that has been preprocessed by the barrel shifter
prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU). A unique and
powerful feature of the ARM processor is the ability to shift the 32-bit binary pattern in one of
the source registers left or right by a specific number of positions before it enters the ALU. This
shift increases the power and flexibility of many data processing operations.

There are data processing instructions that do not use the barrel shift, for example, the MUL
(multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add) instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly useful
for loading constants into a register and achieving fast multiplies or division by a power of 2.

g En cu FEm
= 2 | Barrel shifter
= B
2 N
E '_E EasultN
=
[\,Ill:’:..ﬁthm ztic logic unit/

o]

Ed

Barrel shifter operations,

Mnemonic Description Shift Result Shift amount y
L5L logical shift left XLSLy x=vy #0-51 or Rs
LSH logical shift right xLSRy (unsigned)x = y #1-32 or Rs
ASH arithmetic right shift ~ xASRYy (signed)x =y #1=32 or Rs
ROR rotate right XRORY ((unsigned)x =) | (xa (32 = p)) #1=31 0or Rs
RRX rotate right extended — xRRX (€ flag < 317 | ((unsigned)x 2 1) nome

Mote: x represents the register being shifted and p represents the shift amount.

— —
Bit Bit 13l
31 2 1]

=g
....... -

Condilion Bags

Comadition Mags
updated when
S is preseni

Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate #immediate

Register Rm

Logical shift left by immediate Rm, LSL #shift imm
Logical shift left by register Rm, LSL Rs

Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift imm
Arithmetic shift right by register Rm, ASR Rs

Rotate right by immediate Rm, ROR #shift imm
Rotate right by register Rm, ROR Rs

Rotate right with extend Rm, RRX

Arithmetic Instructions

The arithmetic instructions implement addition and subtraction of 32-bit signed and unsigned
values.

Syntax: <instruction>{<cond=}{5} Rd, Rn, N

ADC | add two 32-bil values and carry Rd = Rn+ N+ carry
ADD | add two 32-bit values Rd=Rn+ N
RSB | reverse subtract of two 32-bit values Rd=N — Rn

RSC | reverse subtract with carry of two 32-bit values | Rd = N — Rn—!{carry flag)

SBC | subtract with carry of two 32-bit values Rd = Rn — N—!(carry flag)

SUB | subtract two 32-bil values Rd=Rn—N

N is the result of the shifter operation.
ExampPLE This simple subtract instruction subtracts a value stored in register r2 from a value stored

in register rl. The result is stored in register 0.

PRE r0 = 0x00000000
rl = 0x00000002
ré = 0x00000001

SUB rO, rl, r2

POST r0 = Ox00000001

Using the Barrel Shifter with Arithmetic Instructions

The wide range of second operand shifts available on arithmetic and logical instructions is a very

powerful feature of the ARM instruction set. illustrates the use of the inline barrel shifter with an

arithmetic instruction. The instruction multiplies the value stored in register rl by three.
ExampPLE Register r/ is first shifted one location to the left to give the value of twice ri. The ADD

instruction then adds the result of the barrel shift operation to register rI. The final result
transferred into register r0 is equal to three times the value stored in register rl.

PRE r0o = Ox00000000

rl = Ox00000005

ADD 0, r1l, i, LSL #1
POST rO0 = 0x0000000f

rl = Ox00000005

LoGcicAL INSTRUCTIONS

Logical instructions perform bitwise logical operations on the two source registers.

Syntax: <instruction>{<cond>}{S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd = Rn& N
ORR logical bitwise OR of two 32-bit values Rd =Rn | N
EOR logical exclusive OR of two 32-bit values Rd = Rn™ N
BIC logical bit clear (AND NOT) Rd — Rn& —N

ExaAMPLE

This example shows a more complicated logical instruction called BIC, which carries out
a logical bit clear.

PRE rl
re

0b1111
Op0101

BIC vO, rl, r2

POST 0 = Ob1010
This is equivalent to
Rd = Rn AND MOT(N)

Im this example, register r2 contains a binary pattern where every binary 1 in r2 clears
a corresponding bit location in register rl. This instruction is particularly useful when
clearing status bits and is frequently used to change interrupt masks in the gpsr.

The logical instructions update the cpsr flags only if the 5 suffix is present. These
instructions can use barrel-shifted second operands in the same way as the arithmetic
instructions.

COMPARISON INSTRUCGTIONS

The comparison instructions are used o compare or test a register with a 32-bit value.
They update the ¢psr flag bits according to the result, but do not affect other registers.
After the bits have been set, the information can then be used to change program flow by
using conditional execution. For more information on conditional execution take a look
at Section 3.8. You do not need to apply the 5 suffix for comparison instructions to update
the flags.

Syntax: =imnstruction={=cond=} Rn, M

CMN compare negated flags set as a result of Rn 4+ N
CMP COMmpane flags set s a result of Rn — N
TEQ test for equality of two 32-bit values flags set as a result of Rn * N
T5T test bits of o 32-bit value flags set as a result of Ro & N

Exauwet £ This example shows 2 CAF comparison insiruction. You can see thal both registers, nd and
re, are equal before executing the instruction. The value of the 2z flag prior to execution is 0

and 15 represented by a lowercase £ Aller execution the 2 llag danges fo 1 or an upperces:
£ This change indicates equaliny.

PRE cpir = nzcwqlFr_USER
-4
-4

N ra, 9
POST cpsr = nfcwqlFr USER

The CHP i effectively 3 subtract instruction with the result discardeds similarty the 15T
Instruction is a loglcal ANL operation, and TEQ is a logical exclusive OR operation. For
each, the results are discardesd but the condition bits are updated n the cpse. It i important
to understand that comparison instructlons only modily the conditlon [kags of the gesr and

do not affect the regisiers being compared.

MuLTiPLY INSTRUCTIONS

The multiply instructions multiply the contents of 3 pair of registers and, depending apon
the instruction, accumslate the results in with another register, The keng multiphes acce-

mulate onto 3 pair of registers representing 3 64-bit value. The final result & placed In
3 destination repister or 3 pair of repisiers.

Syntax: MLA{<comd-}{5} Rd, Pm, Rs, Am
MUL{<cond=] (5] Rd, Mm, RS

HLA mltiphy and acoumelate Rd = (Rm* Rs) + Rn

ML | ooltiply Rd = Rm* s

Syntan: <instructioms{=cond=| [5] Rdlo, Adil, #m, Bs

SMLAL | sigmed multiply acoombate bong | [RdET, Rallo] = |Rel, Bdlo] + (Rm* R3)

SMULL | sipmed mudtiply hong, [RFr, Rdlo] = R * R
UMLAL | umsigned multiply accumulate | [Radii, Rdlo] = | Ralli, Rallo] + (Bm* Rs)
long

UMULL | umsigmed mahtiply long IRk, Rls] — R * s

BRANCH INSTRUCTIONS

A branch instruction changes the flow of execution or is used to call a routine. This type of
instruction allows programs to have subroutines, if-then-else structures, and loops.

The change of execution flow forces the program counter pc to point to a new address. The
ARMV5SE instruction set includes four different branch instructions.

Syntax: B{<cond>} label
BL{<cond>} label
BX{<cond>} Rm

BLX{<cond>} label | Rm

B branch pc = label

pc = label
BL branch with link
Ir = address of the next instruction after the BL

BX branch exchange pc = Rm & Oxfffffffe, T=Rm &1
pc = label, T =1
branch exchange pc = Rm & Oxfffffffe, T = Rm &1
BLX .
with link

Ir = address of the next instruction after the
BLX

The address label is stored in the instruction as a signed pc-relative offset and must be
within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the cpsr.
When instructions set T, the ARM switches to Thumb state.

Example:

This example shows a forward and backward branch. Because these loops are address
specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward

ADD xl, xZd, #4
LDD 0, 6, #2
ADD x3, =T, #4

SUBE rl, rd, #4

backvard
ADD xl, 2, #4
SUE rl, 2, #4
ADD xd, 6, T
B backward

Branches are used to change execution flow. Most assemblers hide the details of a branch
instruction encoding by using labels. In this example, forward and backward are the labels. The
branch labels are placed at the beginning of the line and are used to mark an address that can be
used later by the assembler to calculate the branch offset.

LOAD-STORE INSTRUCTIONS

Load-store instructions transfer data between memory and processor registers. There are
three types of load-store instructions: single-register transfer, multiple-register transfer, and
swap.

SINGLE-REGISTER TRANSFER

These instructions are used for moving a single data item in and out of a register. The
datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes. Here
are the various load-store single-register transfer instructions.

Symtax: <LDE|STE>[<comnd>} {B} ERd, addressing!
LDE [<cond>} SBE|H|SH Rd, addressing®
STR {<cond>}H Rd, addressing®
LDR load word into a register Rd <-mem32faddress]
STR save byte or word from aregister | Rd->mem3Zfaddress]
LDRE load byte into a register Rd «<- memé&faddress]
STRE save byte from a register Rd -> mem8faddress]
LDEH load halfword into a register Rd <- mem lGfaddress]
STRH save halfword into a register Rd -> mem l6faddress]
LDRSE load signed byte into a register Rd < SignExtend
fmemSfaddress|)
LDESH load signed halfword into aregister Bd < SignExtend
(mem I §faddress])

SINGLE-REGISTER LOAD-STORE ADDRESSING MODES

The ARM instruction set provides different modes for addressing memory. These modes
incorporate one of the indexing methods: preindex with writeback, preindex, and postindex

EXAMPLE

Index methods.

Base address
Index method Data register Example
Preindex with writeback mem{[base + offset] base + offset LDR r0,[rl,#4]!
Preindex mem[base + offset] not updated LDR r0,[r1,#4]
Postindex mem|base] base + offset LDR r0,[r1],#4

Note: ! indicates that the instruction writes the calculated address back to the base address register.

Preindex with writeback calculates an address from a base register plus address offset and
then updates that address base register with the new address. In contrast, the preindex offset
is the same as the preindex with writeback but does not update the address base register.
Postindex only updates the address base register after the address is used. The preindex
mode is useful for accessing an element in a data structure. The postindex and preindex
with writeback modes are useful for traversing an array.

PRE r0 = 0x00000000
rl = 0x00090000
mem32 [0x00009000]
mem32 [0x00009004]

0x01010101
0x02020202

LDR r0, [rl, #4]!
Preindexing with writeback:

POST(1) r0 = 0x02020202
rl = 0x00009004

LDR r0, [rl, #4]
Preindexing:

POST(2) r0 = 0x02020202
rl = 0x00009000

LDR ro, [rl], #4
Postindexing:

POST(3) r0 = 0x01010101
rl = 0x00009004

Single-register load-store addressing, word or unsigned byte.

Addressing'! mode and index method Addressing' syntax

Preindex with immediate offset [Rn, #+/-offset 12]

Preindex with register offset [Rn, +/-Rm]

Preindex with scaled register offset [Rn, +/-Rm, shift #shift imm]
Preindex writeback with immediate offset [Rn, #+/-offset 12]!

Preindex writeback with register offset [Rn, +/-Rm]!

Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift_imm]!
Immediate postindexed [Rn], #+/-offset 12

Register postindex [Rn], +/-Rm

Scaled register postindex [Rn], +/-Rm, shift #shift_imm

MULTIPLE-REGISTER TRANSFER

Load-store multiple instructions can transfer multiple registers between memory and the
processor in a single instruction. The transfer occurs from a base address register Rn pointing
into memory. Multiple-register transfer instructions are more efficient from single-register
transfers for moving blocks of data around memory and saving and restoring context and stacks.

Table Examples of LDR instructions using different addressing modes.
Instruction = rl+ =
Preindex LOR r0,[rl,#0x4]! mem32 [rl+0xd] Oxd
with
writeback
LOR r0,[rl,r2]! mem32 [rl+rZ] re
LDR rO,[rl,r2,LSR#0x4]! mem32[rl+ (r2 LSR 0x4)] {r2 LSR Ox4)
Preindex LDR r0,[rl1,#0x4] mem32[r1+0x4] not updated
LDR r0,[rl,r?] mem32[rl +r2] not updated
LOR r0,[rl,-r2,LSR #0x4] mem3Z2[rl-(r2 LSR 0xd)] not updated
Postindex LDR rO,[rl],#0xd mem3Z[rl] Oxd
LDR r0,[r1],r2 mem32[r1] r?
LOR v0,[rl],r2,L5R #0xd mem3z [r1] (r2 LSR 0xd)
Table Single-register load-store addressing, halfword, signed halfword, signed byte, and
doubleword.
Addressing” mode and index method Addressing” syntax
Preindex immediate offsel [Rn, #+/-offset 8]
Preindex register offset [Rn, +/-Rm]
Preindex writeback immediate offset [Rn, #+/-offset 8]!
Preindex writeback register offset [Rn, +/-Rm]!
Immediate postindexed [Rn], #+/-offset 8
Register postindexed [Rn], +/-Rm
Table Variations of STRH instructions.
Instruction Result rl+ =
Preindex with ~ STRH r0,[rl,#0x4]! meml6[rl+0x4]=r0 Ox4
writeback
STRH r0,[rl,r2]! meml&[rl+r2]=r0 r2
Preindex STRH rO,[rl, #0x4] meml6[r140x4]=r0 mot updated
STRH r0,[rl,r2] meml6[rl+r2] =r0 not updated
Postindex STRH r0,[rl],#0x4 meml&[rl]=r0 Ox4

STRH r0,[rl],r2 meml&[rl]=r0 r2

Table

Load-store multiple instructions can increase interrupt latency. ARM implementations
do not usually interrupt instructions while they are executing, For example, on an ARM7
a load multiple instruction takes 2+ Nt cycles, where N the number of registers to load
and tis the number of eycles required for each sequential access to memory. If an interrupt
has been raised, then it has no effect until the load-store multiple instruction is complete.

Compilers, such asarmee, provide a switch to control the maximum number of registers
being transferred on a load-store, which limits the maximum interrupt latency.

Syntax: <LOM|STHs{<cond=]<addressing mode= Rn{!},<registerss{")

LOM | load multiple registers | [Rd]*™ <- mem32]start address + 4*N] optional Rn updated

STH | save multiple registers | [Rd)*N -> mem32|start address + 4*N] optional Rn updated

Table 3.9 shows the diflerent addressing modes for the load-store multiple instructions,
Here Nis the number of registers in the list of registers,

Any subset of the current bank of registers can be transferred to memory or fetched
from memaory. The base register Rn determines the source or destination address for aload-
store multiple instruction, This register can be optionally updated following the transfer.
This occurs when register Rn is followed by the ! character, similiar to the single-register
load-store using preindex with writeback,

Addressing mode for load-store multiple instructions,

Addressing

mode Description Start address — nd address R

IA increment alter T Rn+ N -4 Rnd*N
[i increment before ~— Ru 44 Rn 4 4'N Rin 4 4'N
DA decrement after Rn=4'N+4 Rn Rit = 4*N

DR decrement before ~ Rn = 4*N Rin =4 R = 4*N

PROGRAM STATUS REGISTER INSTRUCTIONS

The ARM instruction set provides two instructions to directly control a program status
register (psr). The MRS instruction transfers the contents of either the cpsr or spsr into
a register; in the reverse direction, the MSR instruction transfers the contents of a register
into the cpsr or spsr. Together these instructions are used to read and write the cpsrand spsr.

[n the syntax you can see a label called fields. This can be any combination of control
(c), extension (x), status (s), and flags (f). These fields relate to particular byte regions in
a psr,as shown in Figure 3.9,

Syntax: MRS{<cond=} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr> <fields>,Rn
MSR{<cond=} <cpsr|spsr> <fields>,#immediate

I*'it:'.lds-l Flags [24:31]) Status [16:23] “ eXtensiunIE:ISIn Control [0:7] .

Bit 31302028 1654 0

N|Z|ClV IFT| Mode

MRS | copy program status register to a general-purpose register Rd = psr

MSR | move a general-purpose register to a program status register | psr/field] = Rm

MSR | move an immediate value to a program status register pirfﬁe&ﬂ — immediate

The ¢ field controls the interrupt masks, Thumb state, and processor mode.
Example 3.26 shows how to enable IRQ interrupts by clearing the I mask. This opera-
tion involves using both the MRS and MSR instructions to read from and then write to
the cpsr.

ExampLE The MSR first copies the cpsr into register rl. The BIC instruction clears bit 7 of r1. Register
rl is then copied back into the ¢psr, which enables IRQ interrupts. You can see from this
example that this code preserves all the other settings in the ¢psr and only modifies the I bit
in the control field.

PRE cpsr = nzcvglFt_SVC
MRS rl, cpsr
BIC rl, rl, #0x80 ; ObO10000O0O
M5R cpsr_c, rl
POST cpsr = nzcvqiFt _SVC
This example is in SVC mode. In user mode you can read all ¢psr bits, but you can only
update the condition flag field f.
CONDITIONAL EXECUTION

Most ARM instructions are conditionally executed—you can specify that the instruction
only executes if the condition code flags pass a given condition or test. By using conditional
execution instructions you can increase performance and code density.

The condition field is a two-letter mnemonic appended to the instruction mnemonic.
The default mnemonic is AL, or always execute.

Conditional execution reduces the number of branches, which also reduces the number of
pipeline flushes and thus improves the performance of the executed code. Conditional execution
depends upon two components: the condition field and condition flags. The condition field is
located in the instruction, and the condition flags are located in the cpsr.

ExampLE This example shows an ADD instruction with the EQ condition appended. This instruction
will only be executed when the zero flag in the cpsris set to 1.

;:r0=rl +r2 if zero flag is set
ADDEQ rO, rl, r2

Only comparison instructions and data processing instructions with the S suffix
appended to the mnemonic update the condition flags in the cpsr.

Unit-111
ARM Programming Model — 11

Thumb Instruction Set

Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set
space. Since Thumb has higher performance than ARM on a processor with a 16-bit data bus, but
lower performance than ARM on a 32-bit data bus, use Thumb for memory-constrained systems.

Thumb has higher code density—the space taken up in memory by an executable
program—than ARM. For memory-constrained embedded systems, for example, mobile phones
and PDAs, code density is very important. Cost pressures also limit memory size, width, and
speed.

On average, a Thumb implementation of the same code takes up around 30% less
memory than the equivalent ARM implementation. As an example, the same divide code routine
implemented in ARM and Thumb assembly code. Even though the Thumb implementation uses
more instructions, the overall memory footprint is reduced. Code density was the main driving
force for the Thumb instruction set. Because it was also designed as a compiler target, rather than
for hand-written assembly code, we recommend that you write Thumb-targeted code in a high-
level language like C or C++.

Each Thumb instruction is related to a 32-bit ARM instruction. A simple Thumb ADD
instruction being decoded into an equivalent ARM ADD instruction. Only the branch relative
instruction can be conditionally executed. The limited space available in 16 bits causes the barrel
shift operations ASR, LSL, LSR, and ROR to be separate instructions in the Thumb ISA.

ARM code Thumb code

ARMDivide ThumbDivide
: IN: rO(value).rl{divisor) : IN: rO({value),rl(divisor)
s OUT: r2(MODulus),r3{DIVide) 3 OUT: r2(MODulus),r3(DIVide)
MoV r3,#0 MoV r3,#0
Toop Toop
sSUBS rl,r0,rl ADD ri,#l
ADDGE r3,r3,#1 S5UB rd,rl
BGE loop BGE loop
ADD r2,ri,rl SUB ri,#l
ADD rZ,.rd,rl
5 = 4 = 20 bytes 6= 2 =12 bytes
Code density.
Thumb 16-hit ARM 32-bit

instruction instruction

AL ril, #3

ADLYS ril, rl), #3

Fmogeaome

Thumb instruction decoding.
cpsr = nzevgl T _SVC

Mnemonics THUME ISA Description

ADC vl add two 32-bit values and carry
ADD vl add two 32-bit values
AND vl logical bitwise AND of two 32-bit walues
ASR vl arithm stic shift right
B vl branch relative
BIiC w1l logical bit clear (AND NOT) of two 32-bit values
BEFT w2 breakpoint mnstructions
BL vl relative branch with link
BLX w2 branch with link and exchange
BX vl branch with exchanges
L vl compare negative two 32-bit values
CMP vl compare two 32-bit integers
EOR vl logical exclusive ORF of two 32-bit values
LDM vl load multiple 32-bit words from mem ory to AEM registers
LDR vl load asingle value from awvirtual address in memory
vl logical shift left
vl logical shift right
vl move a 32-bit value into a register
vl multiply two 32-bit wvalues
vl move the logical NOT of 32-bit value into a register
vl negate a 32-bit value
vl logical bitwise OR of two 32-bit wvalues
vl pops multiple registers from the stack
vl pushes multiple registers to the stack
vl rotate right a 32-bit value
vl subtract with carry a 32-bit value
vl store multiple 32-bit repisters tomemory
vl store register to avirtual address in memory
vl subtract two 32-bit values
vl software interrupt
vl test bits of a 32-bit value

Thumb instruction set.

THUMB REGISTER USAGE

In Thumb state, you do not have direct access to all registers. Only the low registers r0 to
r7 are fully accessible, as shown in below Table 4.2. The higher registers r8 to r12 are only
accessible with MOV, ADD, or CMP instructions. CMP and all the data processing instructions
that operate on low registers update the condition flags in the cpsr.

Summary of Thumb register usage.

Fepisters Access

s fully accessible

srla only accessible by MOV, ADD, and CMF
113 sp bmited accessibility

ridir bmited accessibility

rla po bmited accessibility

CpsT only mdirect access

SpsT I A00EESE

You may have noticed from the Thumb instruction set list and from the Thumb register
usage table that there is no direct access to the cpsr or spsr. In other words, there are no MSR-
and MRS-equivalent Thumb instructions.

To alter the cpsr or spsr, you must switch into ARM state to use MSR and MRS.
Similarly, there are no coprocessor instructions in Thumb state. You need to be in ARM state to
access the coprocessor for configuring cache and memory management.

OTHER BRANCH INSTRUCTIONS

There are two variations of the standard branch instruction, or B. The first is similar to the
ARM version and is conditionally executed; the branch range is limited to a signed 8-bit
immediate, or 256 to—+254 bytes. The second version removes the conditional part of the
instruction and expands the effective branch range to a signed 11-bit immediate, or 2048 to
+2046 bytes.

The conditional branch instruction is the only conditionally executed instruction in
Thumb state.

Syntax: B<cond> label
B label
BL label

B [branch pe = label

BL | branch with link | pc = label
Ir = (instruction address after the BL) + |

The BL instruction is not conditionally executed and has an approximate range of +/—4 MB,
This range is possible because BL (and BLX) instructions are translated into a pair of 16-bit

Thumb instructions. The first instruction in the pair holds the high part of the branch
offset, and the second the low part. These instructions must be used as a pair.
The code here shows the various instructions used to return from a BL subroutine call:

Mov pc, 1r
BX r
POP {pc}

To return, we set the pc to the value in Ir. The stack instruction called POP

DATA PROCESSING INSTRUCTIONS

The data processing instructions manipulate data within registers. They include move
instructions, arithmetic instructions, shifts, logical instructions, comparison instructions,
and multiply instructions. The Thumb data processing instructions are a subset of the ARM

data processing instructions.

Syntax:
<ADC|ADD | AND |BIC|EOR |MOV |MUL |MVN|NEG|ORR|SBC|SUB= Rd, Rm
<ADD|ASR|LSL|LSR|ROR|SUB= Rd, Rn #immediate

<ADD |MOV|SUB= Rd,#immediate
<ADD|5UB> Rd,Rn,Rm

ADD Rd,pc,#immediate

ADD Rd,sp,#immediate
<ADD|SUB> sp, #immediate
<ASR|LSL|LSR|ROR=> Rd,Rs
<CMN|CMP|TST> Rn,Rm

CMP Rn,#immediate

MOV Rd,Rn
ADC | add two 32-bit values and carry | Rd = Rd + Rm + C flag
ADD | add two 32-bit values Rd = Rn + immediate

Rd = Rd + immediate

Re = Rd + Rm

Re = Rd + Rm

Rd = (pc & Oxfiffific) + (immediate < 2)
Rd = sp + (immediate < 2)

sp = sp + (immediate < 2)

These instructions follow the same style as the equivalent ARM instructions. Most
Thumb data processing instructions operate on low registers and update the ¢psr. The

exceptions are

which can operate on the higher registers r8—r14 and the pc. These instructions, except for
CMP, do not update the condition flags in the ¢psr when using the higher registers. The CMP

MOV Rd,Rn

ADD Rd,Rm

CMP Rn,Rm

ADD sp, #immediate
SUB sp, #immediate
ADD Rd,sp,#immediate
ADD Rd,pc,#immediate

instruction, however, always updates the cpsr.

SINGLE-REGISTER LOAD-STORE INSTRUCTIONS

The Thumb instruction set supports load and storing registers, or LDR and S5TR. These
instructions use two preindexed addressing modes: offset by register and offset by
immediate.

Syntax: <LDR|STR={<B|H=} Rd, [Rn,#immediate]
LOR{<H|5B|SH=} Rd,[Rn,Rm]
STR{<B|H=} Rd,[Rn,Rm]
LDR Rd,[pc,#immediate]
<LDR|STR= Rd,[sp,#immediate]

LDOR load word into a register Rd <- mem32[address]

STR save word from a register Rd -= mem3Z[address]

LDRE | load byte into a register Rd <- mem8[oddress]

STRE | save byte from a register Rd -> mem# [oddress]

LORH | load halfword into a register Rd <- memlé&[address]

STRH | save halfword into a register Rd -= memlé[address]

LDRSB | load signed byte into a register Rd =- SignExtend (mem8[oddress])
LDRSH | load signed halfword into a register Rd == SignExtend (meml6 [oddress])

You can see the different addressing modes in Table . The offset by register uses
a base register Rn plus the register offset Km. The second uses the same base register Rn
plus a 5-bit immediate or a value dependent on the data size. The 5-bit offset encoded in
the instruction is multiplied by one for byte accesses, two for 16-bit accesses, and four for
32-bit accesses.

Table Addressing modes.

Type syntax

Load/store register [Rn, Rm]
Base register + offset [Rn, #immediate]
Relative [pc|sp, #immediate]

MULTIPLE-REGISTER LOAD-STORE INSTRUCTIONS

The Thumb versions of the load-store multiple instructions are reduced forms of
the ARM load-store multiple instructions. They only support the increment after (IA)
addressing mode.

Syntax : <LDM|STM>IA Rn!, {low Register 1ist}

LDMIA | load multiple registers | {Rd}™ <- mem32[Rn + 4*N], Rn=Rn + 4*N

STMIA | save multiple registers | {Rd}™™ -> mem32[Rn + 4*N], Rn=Rn + 4*N

Here N is the number of registers in the list of registers. You can see that these instruc-
tions always update the base register Rnafter execution. The base register and list of registers
are limited to the low registers r0 to r7.

STACK INSTRUCTIONS

The Thumb stack operations are different from the equivalent ARM instructions because
they use the more traditional POP and PUSH concept.

Syntax: POP {low register list{, pc}}
PUSH {Tow register list{, Ir}}

POP | pop registers from the stacks | RA*N <- mem32[sp+4*N], sp=sp+4*N

PUSH | push registers on to the stack RA*N -> mem32[sp+4*N], sp=sp—4*N

The interesting point to note is that there is no stack pointer in the instruction. This is
because the stack pointer is fixed as register r13in Thumb operations and sp is automatically
updated. The list of registers is limited to the low registers r0to r7.

The PUSH register list also can include the link register Ir; similarly the POP register
list can include the pc. This provides support for subroutine entry and exit,

The stack instructions only support full descending stack operations.

SOFTWARE INTERRUPT INSTRUCTION

Similar to the ARM equivalent, the Thumb software interrupt (SWI) instruction causes
a software interrupt exception. If any interrupt or exception flag is raised in Thumb state,
the processor automatically reverts back to ARM state to handle the exception.

Syntax: SWI immediate

SWI

software interrupt

Ir_svc = address of instruction following the SWI
SpSl'_SI’C = CpST

pe =vectors + 0x8

cpsr mode = SVC

epsr I =1 (mask IRQ interrupts)

cpsr T =0 (ARM state)

The Thumb SWI instruction has the same effect and nearly the same syntax as the ARM
equivalent. It differs in that the SWI number is limited to the range 0 to 255 and it is not

conditionally executed.

UNIT -IV
ARM Programming

BAsiCc C DATA TYPES

There are also differences between the addressing modes available when loading and
storing data of each type.

ARM processors have 32-bit registers and 32-bit data processing operations. The ARM
architecture is a RISC load/store architecture. In other words you must load values from memory
into registers before acting on them. There are no arithmetic or logical instructions that manipulate
values in memory directly.

Early versions of the ARM architecture (ARMv1 to ARMv3) provided hardware support
for loading and storing unsigned 8-bit and unsigned or signed 32-bit values.

Load and store instructions by ARM architecture.

Architecture Instruction Action

Pre-ARMv4 LDEB load an unsigned 8-bit value
=TEB store a signed or unsigned 8-bit value
LDRE load a signed or unsigned 32-bit value
=TR store a signed orunsigned 32-bit value
ARMv4 LDE=B load a signed 8-bit value
LDEH load an unsigned 16-bit value
LDESH load a signed 16-bit value
STEH store a signed orunsigned 16-bit value
ARMvVS LDED load a signed or unsigned 64-bit value
=TED store a signed orunsigned 64-bit value

These architectures were used on processors prior to the ARM7TDMI. The load/store
instruction classes available by ARM architecture.

In loads that act on 8- or 16-bit values extend the value to 32 bits before writing to an ARM
register. Unsigned values are zero-extended, and signed values sign-extended. This means that the
cast of a loaded value to an int type does not cost extra instructions. Similarly, a store of an 8- or
16-bit value selects the lowest 8 or 16 bits of the register. The cast of an int to smaller type does
not cost extra instructions on a store.

The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores
directly, through new instructions. Since these instructions are a later addition, they do not support
as many addressing modes as the pre-ARMv4 instructions.

Finally, ARMvV5 adds instruction support for 64-bit load and stores. This is available in
ARMOE and later cores.

Prior to ARMv4, ARM processors were not good at handling signed 8-bit or any 16-bit
values. Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than a signed
8-bit value as is typical in many other compilers.

Compilers armcc and gcc use the datatype mappings in Table 5.2 for an ARM target. The
exceptional case for type char is worth noting as it can cause problems when you are porting code
from another processor architecture. A common example is usigg a char type variable i as a loop
counter, with loop continuation condition i 0. As i is unsigned_for the ARM compilers, the loop
will never terminate. Fortunately armcc produces a warning in this situation: unsigned comparison
with 0. Compilers also provide an override switch to make char signed. For example, the command
line option -fsigned-char will make char signed on gcc. The command line option -zc will have the
same effect with armcc.

C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte

short signed 16-bit halfword
int signed 32-bit word

Tong signed 32-bit word

long long signed 64-bit double word

FUNCTION ARGUMENT TYPES

local variables from types char or short to type int increases performance and
reduces code size. The same holds for function arguments. Consider the following simple function,
which adds two 16-bit values, halving the second, and returns a 16-bit sum:

short add vl (short a, short b)

{

return a + (b>>1);

This function is a little artificial, but it is a useful test case to illustrate the problems faced
by the compiler. The input values a, b, and the return value will be passed in 32-bit ARM registers.
Should the compiler assume that these 32-bit values are in the range of a short type, that is, 32,768
to 32,7672 Or should the compiler force values to be in this range by sign-extending the lowest 16
bits to fill the 32-bit register? The compiler must make compatible decisions for the function caller
and callee. Either the caller or callee must perform the cast to a short type.

We say that function arguments are passed wide if they are not reduced to the range of the
type and narrow if they are. You can tell which decision the compiler has made by looking at the
assembly output for add_v1. If the compiler passes arguments wide, then the callee must reduce
function arguments to the correct range. If the compiler passes arguments narrow, then the caller
must reduce the range. If the compiler returns values wide, then the caller must reduce the return
value to the correct range. If the compiler returns values narrow, then the callee must reduce the
range before returning the value.

For armcc in ADS, function arguments are passed narrow and values returned narrow. In
other words, the caller casts argument values and the callee casts return values. The compiler uses
the ANSI prototype of the function to determine the datatypes of the function arguments.

The armcc output for add_v1 shows that the compiler casts the return value to a short type,
but does not cast the input values. It assumes that the caller has already ensured that the 32-bit
values r0 and rl are in the range of the short type. This shows narrow passing of arguments and
return value.

add vl
ADD r0,r0,rl,ASR #1 s r0 = (int)a + ((int)b>>1)
MOV r0,r0,LSL #16
MOV r0,r0,ASR #16 : r0 = (short)r0
MOV pc,rld . return r0

The gcc compiler we used is more cautious and makes no assumptions about the range of
argument value. This version of the compiler reduces the input arguments to the range

of a short in both the caller and the callee. It also casts the return value to a short type.
Here is the compiled code for add v1:

add vl gcc
MOV r0, r0, LSL #16
MOV rl, rl, LSL #16
MOV rl, rl, ASR #17 3 vl = (int)b>>1
ADD rl, rl, r0, ASR #16 ; vl += (int)a
MOV rl, rl, LSL #16
MOV r0, rl1, ASR #16 ; r0 = (short)rl
MOV pc, Ir ; return r0

Whatever the merits of different narrow and wide calling protocols, you can see that
char or short type function arguments and return values introduce extra casts. These
increase code size and decrease performance. It is more efficient to use the int type for
function arguments and return values, even if you are only passing an 8-bit value.

C LOOPING STRUCTURES

This section looks at the most efficient ways to code for and while loops on the ARM. We
start by looking at loops with a fixed number of iterations and then move on to loops with a
variable number of iterations. Finally we look at loop unrolling.

LooPs WITH A FIXED NUMBER OF ITERATIONS

What is the most efficient way to write a for loop on the ARM? Let’s return to our
checksum example and look at the looping structure.

The first point to note about the procedure call standard is the four-register rule. Functions
with four or fewer arguments are far more efficient to call than functions with five or more
arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in
registers. For functions with more arguments, both the caller and callee must access the stack for
some arguments. Note that for C++ the first argument to an object method is the this pointer. This
argument is implicit and additional to the explicit arguments.

Int checksum v5(1nt *data)

{
unstgned 1nt 1;
nt sum=0;

for (1=0; 1<64; 1++)
{

sum += *(data++);

return sum;

}

This compiles to

checksum v5
MOV rz,ro ; 12 = data
MOV ro, 10 ; sum =0
MOV ri, #0 ;1 1=0

checksum_v5_Toop
LDR ri,[r2], M i 13 = *(datass)
ADD r,ri, ; 144
CMp rl,#0x40 ; compare 1, 64
ADD r,ri,rn0 ; Sum += r3
BCC checksum v5 Toop ; 1f (1<64) goto loop
MOV pc,rid ; retumn sum

It takes three instructions to implement the for loop structure:

& An ADD to increment |
® A compare to check if 1 s less than 64
® A conditional branch to continue the loop if 1 < 64

This is not efficient, On the ARM, a loop should only use two instructions:

® A subtract to decrement the loop counter, which also sets the condition code flags on
the result

® A conditional branch instruction

Function Call:

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and
return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard (ATPCS)
covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: r0, rl, r2, and
r3. Subsequent integer arguments are placed on the full descending stack, ascending in memory
Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as
long long or double are passed in a pair of consecutive argument registers and returned in r0, rl.
The compiler may pass structures in registers or by reference according to command line compiler
options.

The first point to note about the procedure call standard is the four-register rule. Functions
with four or fewer arguments are far more efficient to call than functions with five or more
arguments. For functions with four or fewer arguments, the compiler can pass all the arguments in
registers. For functions with more arguments, both the caller and callee must access the stack for
some arguments. Note that for C++ the first argument to an object method is the this pointer. This
argument is implicit and additional to the explicit arguments.

If your C function needs more than four arguments, or your C++ method more than three
explicit arguments, then it is almost always more efficient to use structures. Group related
arguments into structures, and pass a structure pointer rather than mul- tiple arguments. Which
arguments are related will depend on the structure of your software.

s+ 16 Aroument 8
s+ 12 Argument 7
s+ 8 Argument 6
i+ 4 Aroument 5
SI7 Argument 4
"3 Aroument 3
2 Argument 2
I Argument 1
0 Aroument 0 Return wvalus

ATPCS argument passing.

The next example illustrates the benefits of using a structure pointer. First we show a
tvpical routine to insert ¥ byvtes from array data into a queue. We implement the gqueue using
acyclic bufferwith start address §_siar: (inclusive) and end address §_end (exclusive).

Pointer Aliasing

Two pointers are said to alias when they point to the same address. If you write to one
pointer, it will affect the value you read from the other pointer. In a function, the compiler often
doesn’t know which pointers can alias and which pointers can’t. The compiler must be very
pessimistic and assume that any write to a pointer may affect the value read from any other
pointer, which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments two timer values
by a step amount:

void timers v1(int *timerl, int *timer2, int *step)
{

*timerl += *step;

*timer2 += *step;

}

This compiles to

timers vl
LDR r3, [r0,#0] + r3 = *timerl
LDR ri2,[r2,#0] ; 112 = *step
ADD r3,ri,rl? 1 r3 +=rl2
STR r3,[r0,#0] + *timerl = r3
LOR r0,[r1,#0] ; r0 = *timer?
LDR re,[r2,#0] ; r2 = *step
ADD r0,r0,r? 2 r0 4= r2
STR r0,[rl,#0] + *timer? = t0

MOV pc,rld ; return

STRUCTURE ARRANGEMENT

The way you lay out a frequently used structure can have a significant impact on its perfor-
mance and code density. There are two issues concerning structures on the ARM: alignment of the
structure entries and the overall size of the structure.

For architectures up to and including ARMV5TE, load and store instructions are only
guaranteed to load and store values with address aligned to the size of the access width. Table 5.4
summarizes these restrictions.

For this reason, ARM compilers will automatically align the start address of a structure to a
multiple of the largest access width used within the structure (usually four or eight bytes) and align
entries within structures to their access width by inserting padding.

For example, consider the structure
struct {

char a;

int b;

char c;

short d;

¥

For a little-endian memory system the compiler will lay this out adding padding to ensure
that the next object is aligned to the size of that object:

For a little-endian memory system the compiler will lay this out adding padding to ensure
that the next object is aligned to the size of that object:

Address +3 +2 +1 +0
+0 pad pad pad a
+4 | b[31,24] | b[23,16] | b[15,8] | b[7,0]
+8 | d[15,8] d[7,0] pad o

Load and store alignment restrictions for ARMV5TE.

Transfer size Instruction Byte address

1 byte LDRB, LDRSB, STRB any byte address alignment
2 bytes LDRH, LDRSH, STRH multiple of 2 bytes

4 bytes LDR, STR multiple of 4 bytes

8 bytes LDRD, STRD multiple of 8 bytes

Floating Point

The majority of ARM processor implementations do not provide hardware floating-point
support, which saves on power and area when using ARM in a price-sensitive, embedded
application. With the exceptions of the Floating Point Accelerator (FPA) used on the ARM7500FE
and the Vector Floating Point accelerator (VFP) hardware, the C compiler must provide support
for floating point in software.

In practice, this means that the C compiler converts every floating-point operation into a
subroutine call. The C library contains subroutines to simulate floating-point behavior using
integer arithmetic. This code is written in highly optimized assembly. Even so, floating-point
algorithms will execute far more slowly than corresponding integer algorithms.

If you need fast execution and fractional values, you should use fixed-point or block-
floating algorithms. Fractional values are most often used when processing digital signals such as
audio and video. This is a large and important area of programming, For best performance you
need to code the algorithms in assembly

Instruction Scheduling

The time taken to execute instructions depends on the implementation pipeline. For this
chapter, we assume ARM9TDMI pipeline timings.

The following rules summarize the cycle timings for common instruction classes on the
ARMOTDMI.

Instructions that are conditional on the value of the ARM condition codes in the cpsr take one
cycle if the condition is not met. If the condition is met, then the following rules apply:

" ALU operations such as addition, subtraction, and logical operations take one cycle. This
includes a shift by an immediate value. If you use a register-specified shift, then add one cycle. If
the instruction writes to the pc, then add two cycles.

" Load instructions that load N 32-bit words of memory such as LDR and LDM take N
cycles to issue, but the result of the last word loaded is not available on the following cycle. The
updated load address is available on the next cycle. This assumes zero-wait-state memory for an
uncached system, or a cache hit for a cached system. An LDM of a single value is exceptional,
taking two cycles. If the instruction loads pc, then add two cycles.

. Load instructions that load 16-bit or 8-bit data such as LDRB, LDRSB, LDRH, and
LDRSH take one cycle to issue. The load result is not available on the following two cycles. The
updated load address is available on the next cycle. This assumes zero-wait-state memory for an
uncached system, or a cache hit for a cached system.

" Branch instructions take three cycles.

' Store instructions that store N values take N cycles. This assumes zero-wait-state memory
for an uncached system, or a cache hit or a write buffer with N free entries for a cached system. An
STM of a single value is exceptional, taking two cycles.

" Multiply instructions take a varying number of cycles depending on the value of the second
operand in the product (see Table D.6 in Section D.3).

To understand how to schedule code efficiently on the ARM, we need to understand the ARM
pipeline and dependencies. The ARM9TDMI processor performs five operations in parallel:

" Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into the
core and then processes down the core pipeline.
" Decode: Decode the instruction that was fetched in the previous cycle. The processor also

reads the input operands from the register bank if they are not available via one of the forwarding
paths.

' ALU: Executes the instruction that was decoded in the previous cycle. Note this instruc-
tion was originally fetched from address pc 8 (ARM state) or pc 4{Thumb state). Normally this
involves calculating the answer for a data processing operation, or the address for a load, store, or
branch operation. Some instructions may spend several cycles in this stage. For example, multiply
and register-controlled shift operations take several ALU cycles.

Instruction address Pc pc—4 pc-8 pc-12 pc-l6
Action | Fetch | Decode| AU | 151 | 1S2 |

ARMYTDMI pipeline executing in ARM state.

® [SI:Load or store the data specified by a load or store instruction. If the instruction is
not a load or store, then this stage has no effect.

m [S2: Extract and zero- or sign-extend the data loaded by a byte or halfword load
instruction. If the instruction is not a load of an 8-bit byte or 16-bit halfword item,
then this stage has no effect.

Figure shows a simplified functional view of the five-stage ARMY9TDMI pipeline.
Note that multiply and register shift operations are not shown in the figure.

After an instruction has completed the five stages of the pipeline, the core writes the
result to the register file. Note that pe points to the address of the instruction being fetched.
The ALU is executing the instruction that was originally fetched from address pc — 8 in
parallel with fetching the instruction at address pe.

How does the pipeline affect the timing of instructions? Consider the following
examples. These examples show how the cycle timings change because an earlier instruc-
tion must complete a stage before the current instruction can progress down the pipeline.
To work out how many cycles a block of code will take, use the tables in Appendix D that
summarize the cycle timings and interlock cycles for a range of ARM cores.

If an instruction requires the result of a previous instruction that is not available, then
the processor stalls. This is called a pipeline hazard or pipeline interlock.

REGISTER ALLOCATION

You can use 14 of the 16 visible ARM registers to hold general-purpose data. The other two
registers are the stack pointer r13 and the program counter r15. For a function to be ATPCS
compliant it must preserve the callee values of registers r4 to r11. ATPCS also specifies that
the stack should be eight-byte aligned; therefore you must preserve this alignment if calling
subroutines. Use the following template for optimized assembly routines requiring many
registers:

routine name
STMFD sp!, {rd-ri12, 1r} ; stack saved registers
: body of routine
; the fourteen registers r0-rl2 and 1r are available
LDMFD sp!, {r4-rl12, pc} ; restore registers and return

Our only purpose in stacking r12is to keep the stack eight-byte aligned. You need not stack
r12 if your routine doesn’t call other ATPCS routines. For ARMv5 and above you can use
the preceding template even when being called from Thumb code. If your routine may be
called from Thumb code on an ARMvAT processor, then modify the template as follows:

routine_name
STMFD sp!, {rd-r12, 1r} ; stack saved registers
; body of routine
; registers r0-rl2 and Tr available
LDMFD sp!, {rd-ri12, 1r} ; restore registers
BX Ir ; return, with mode switch

In this section we look at how best to allocate variables to register numbers for register-
intensive tasks, how to use more than 14 local variables, and how to make the best use of
the 14 available registers.

Conditional Execution

The processor core can conditionally execute most ARM instructions. This conditional
execution is based on one of 15 condition codes. If you don’t specify a condition, the

assembler defaults to the execute always condition (AL). The other 14 conditions split into
seven pairs of complements. The conditions depend on the four condition code flags N, Z, C, V
stored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM conditions.

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For most
instructions, to update these flags you append an S suffix to the instruction mnemonic. Exceptions
to this are comparison instructions that do not write to a destination register. Their sole purpose is
to update the flags and so they don’t require the S suffix.

By combining conditional execution and conditional setting of the flags, you can imple-
ment simple if statements without any need for branches. This improves efficiency since branches
can take many cycles and also reduces code size.

LOOPING CONSTRUCTS

Most routines critical to performance will contain a loop. We saw in Section 5.3 that on the
ARM loops are fastest when they count down towards zero. This section describes how to
implement these loops efficiently in assembly. We also look at examples of how to unroll
loops for maximum performance.

DECREMENTED COUNTED LoOPsS

For a decrementing loop of N iterations, the loop counter i counts down from N to |
inclusive. The loop terminates with i = 0. An efficient implementation is

MOV i, N
loop
; loop body goes here and i=N,N-1,...,1
SUBS i, i, #1
BGT Toop

The loop overhead consists of a subtraction setting the condition codes followed by
a conditional branch. On ARM7 and ARM9 this overhead costs four cycles per loop. If i
is an array index, then you may want to count down from N — 1 to 0 inclusive instead so
that you can access array element zero. You can implement this in the same way by using
a different conditional branch:

In s arrangement the £ g s sel on e last feration of the loop and deared Tor other
leratbons. IF there s anything different about the last keop, then we can achieve this using
the EQ and NE conditons. For example, 1f you prefoad data for the next koo (35 discussed
In Section £.3.1.1), then you want to avoid the prelosd on the bst loop. Yoo can make all
predosd operations conditional on NE as in Section 6.3.1.1.

There s no reason why we must decrement by one on exch loop. Suppose we requine
N3 loops. Rather than attemping to divide N by three, it is far more efficient to sublract
thres from the loog counter on each (leration:

MW 1. N
100p
; loop bedy goos hers amd ITerates [round up) (N/2) Times
SUES 1, 1. #3
BET loop

UnroLLED COUuNTED Loops

This brings us o the subject of loop unrolling. Loogr anrolling reduoces the koogr overhead by
executing the loop body multiple imes. However, there are problems fo overcome. What

if the loop count s net 3 multiple of the unroll amouni? What if the loop count s smaller
than the unroll amount? We looked at these questions for C code In Section 5.3, In this
section we look a3t how you can handle ihese issues in assemibly.

Wel take the C library functiion memset as 3 case study. This fundion sets N byles of
memory al address s o the byte valoe ¢ The function needs o be efficient, 30 we will kook
al how 1o unroll the loog withoul placing extra resiriciions on e inpal operands. Coar
version of nemset will have the following C protobype:

vold my memser(char *s, int c, ussigeed int N);

To be effident for large N, we peed to write multiple bytes at a time using 5TR or 5T
instructions. Therefore our first task & to alipn the array pointer & However, il B only
worth us doing this if N is suffickently large. We aren’t sure yet what “safficlently large™
rans, bt het's assume we can choose 3 threshold valse Ty and only bother to align the array
when N = Ty Cleardy T > 3 as there i no point in aligning if we don't have foar bytes to
wriid

Now suppose we have aligned the array s We can use store multiples o sel memory
effictently. For example, we can use 2 loop of four store multiples of sght words exch o set
128 bytes on each loop. However, It willl only be worth dotng this if N = Tz = 128, where
T3 15 another threshold to be determiined later on.

Finally, we are left with N < 77 bytes o sel We can wrile bytes in blocks of Four wsing
S5TR untll N = 4. Then we can finish by writing bytes singly with STRE to the end of the
AFTay.

UNIT-5
Memory Management

CACHE ARCHITECTURE

ARM uses two bus architectures in its cached cores, the Von Neamann and the Harvard.
The Von Neumann and Harvard bus architectures differ in the separation of the instruction
and data paths between the core and memory. A different cache design is used to support
the two architectures.

In processor cores using the Von Neumann architecture, there is a single cache used
for instruction and data. This type of cache is known as a unified cache. A unified cache
memory contains both instruction and data values.

The Harvard architecture has separate instruction and data buses to improve overall
system performance, but supporting the two buses requires two caches. In processor cores
using the Harvard architecture, there are two caches: an instruction cache (I-cache) and
a data cache (D-cache). This type of cache is known as a sphit cache. In a split cache,
instructions are stored in the instruction cache and data values are stored in the data cache.

We introduce the basic architecture of caches by showing a unified cache in Figure
The two main elements of a cache are the cache comtroller and the cache memory. The
cache memory is a dedicated memory array accessed in units called cache lines. The cache
controller uses different portions of the address issued by the processor during a memory
request to select parts of cache memory. We will present the architecture of the cache
memory first and then proceed to the details of the cache controller.

BAsIC ARCHITECTURE OF A CACHE MEMORY

A simple cache memory is shown on the right side of Figure 12.4. It has three main parts:
a directory store, a data section, and status information. All three parts of the cache memory
are present for each cache line,

The cache must know where the information stored in a cache line originates from in
main memory. It uses a directory store to hold the address identifying where the cache line
was copied from main memory. The directory entry is known as a cache-tag.

A cache memory musl also store the data read from main memory. This information is
held in the data section (see Figure 12.4).

The size of a cache is defined as the actual code or data the cache can store from main
memory. Not included in the cache size is the cache memory required to support cache-tags
or slatus bils.

There are also status bits in cache memory to maintain state information. Two common
status bits are the valid bit and dirty bit. A valid bit marks a cache line as active, meaning
it contains live data originally taken from main memory and is currently available to the

Address issued Cache Cache

by processor core controller MEMOry
3 — Miss
R Directory s
Hit store Status Data
A A
|| (e =0 | e b
- Cache-tag | v | d | word3 | word2 | word 1 | word() }(alt'h'-:
[Cache-tag) v | d | word3 | word2 | word 1 | word line
12 _< Cache-tag | v | d | word3 | word2 | word 1 | word()
11 '
. Set i I Cache-tag | v | d | word3 | word2 | word | | wordD
index Cache-tag | v | d | word3 | word2 | word] | wordO | | A jdress/data
Cache-tag | v | d [word3 | word2 | word] | wordl || 1,0
: _— Cache-tag | v | d | word3 | word2 | word] | wordD [{—
) -1 Cache-tag | v | d | word3 | word2 | word | | word(
Data =
index -J 1 J
T
() — T

A 4 KB cache consisting of 256 cache lines of four 32-bit words.

BAsIC OPERATION of A CACHE CONTROLLER

The cache controller is hardware that copies code or data from main memory to cache memory
automatically. It performs this task automatically to conceal cache operation from the software it
supports. Thus, the same application software can run unaltered on systems with and without a
cache.

The cache controller intercepts read and write memory requests before passing them on to the
memory controller. It processes a request by dividing the address of the request into three fields,
the tag field, the set index field, and the data index field. The three bit fields are shown in Figure
12.4.

First, the controller uses the set index portion of the address to locate the cache line within the
cache memory that might hold the requested code or data. This cache line contains the cache-tag
and status bits, which the controller uses to determine the actual data stored there.

The controller then checks the valid bit to determine if the cache line is active, and compares the
cache-tag to the tag field of the requested address. If both the status check and comparison
succeed, it is a cache hit. If either the status check or comparison fails, it is a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache memory
and provides the requested code or data to the processor. The copying of a cache line from main
memory to cache memory is known as a cache line fill.

On a cache hit, the controller supplies the code or data directly from cache memory to the
processor. To do this it moves to the next step, which is to use the data index field of the address
request to select the actual code or data in the cache line and provide it to the processor.

CACHE FoLICY

There are three policies that determine the operation of a cache: the write policy, the
replacement policy, and the allocation policy. The cache write policy determines where
data is stored during processor write operations. The replacement policy selects the cache
line in a set that is used for the next line fill during a cache miss. The allocation policy
determines when the cache controller allocates a cache line.

VRITE PoLICY—WRITEBACK OR WRITETHROUGH

When the processor core wriles o memory, the cache controller has two alternatives for
its write policy. The controller can write to both the cache and main memory, updating
the values in both locations; this approach is known as writethrough. Alternatively, the
cache controller can write to cache memory and not update main memory, this is known
as writeback or copyback.

12.3.1.1 Writethrough

When the cache controller uses a writethrough policy, it writes to both cache and main
memory when there is a cache hit on write, ensuring that the cache and main memory
stay coherent at all times. Under this policy, the cache controller performs a write to
main memory for each wrile o cache memory. Because ol the wrile o main memory,
a writethrough policy is slower than a writeback policy.

12.3.1.2 Writeback

When a cache controller uses a writeback policy, it writes to valid cache data memory
and not to main memory. Consequently, valid cache lines and main memory may contain
different data. The cache line holds the most recent data, and main memory contains older
data, which has not been updated.

Caches configured as writeback caches must use one or more of the dirty bits in the
cache line status information block. When a cache controller in writeback writes a value to

cache memory. il getg the dicty hil troe 15 the core accesses The cache line al a later fime. i

FLUSHING AND CLEANING CACHE MEMORY

ARM uses the terms flush and clean to describe two basic operations performed on a
cache.

To “flush a cache” is to clear it of any stored data. Flushing simply clears the valid bit in
the affected cache line. All or just portions ol a cache may need flushing to support changes
in memory configuration. The term invalidate is sometimes used in place of the term flush.
However, il some portion of the D-cache is configured to use a writeback policy, the data
cache may also need cleaning,.

To “clean a cache” is to force a write of dirty cache lines from the cache out to main
memory and clear the dirty bits in the cache line. Cleaning a cache reestablishes coherence
between cached memory and main memory, and only applies to D-caches using a writeback
policy.

Coprocessor 15 registers that configure and control cache operation.

Function Primary register Secondary registers Opcode 2
Clean and flush cache c7 ch, c6, 7, cl0, cl3, cl4 0,1,2
Drain write buffer c7 cl0 4

Cache lockdown c9 cf) 0,1
Round-robin replacement ¢15 cf) 0

Changing the memory configuration of a system may require cleaning or flushing a cache. The
need to clean or flush a cache results directly from actions like changing the access permission,
cache, and buffer policy, or remapping virtual addresses.

The cache may also need cleaning or flushing before the execution of self-modifying code in a
split cache. Self-modifying code includes a simple copy of code from one location to another.
The need to clean or flush arises from two possible conditions: First, the self- modifying code
may be held in the D-cache and therefore be unavailable to load from main memory as an
instruction. Second, existing instructions in the I-cache may mask new instructions written to
main memory.

If a cache is using a writeback policy and self-modifying code is written to main memory, the
first step is to write the instructions as a block of data to a location in main memory. At a later
time, the program will branch to this memory and begin executing from that area of memory as
an instruction stream. During the first write of code to main memory as data, it may be written to
cache memory instead; this occurs in an ARM cache if valid cache lines exist in cache memory
representing the location where the self-modifying code is written. The cache lines are copied to

the D-cache and not to main memory. If this is the case, then when the program branches to the
location where the self-modifying code should be, it will execute old instructions still present
because the self-modifying code is still in the D-cache. To prevent this, clean the cache, which
forces the instructions stored as data into main memory, where they can be read as an instruction
stream.

If the D-cache has been cleaned, new instructions are present in main memory. However, the |-
cache may have valid cache lines stored for the addresses where the new data (code) was written.
Consequently, a fetch of the instruction at the address of the copied code would retrieve the old
code from the I-cache and not the new code from main memory. Flush the I-cache to prevent this
from happening.

DEeTAILS of THEARM MMU

The ARM MMU performs several tasks: It translates virtual addresses into physical addresses, it
controls memory access permission, and it determines the individual behav- ior of the cache and
write buffer for each page in memory. When the MMU is disabled, all virtual addresses map
one-to-one to the same physical address. If the MMU is unable to translate an address, it
generates an abort exception. The MMU will only abort on translation, permission, and domain
faults.

The main software configuration and control components in the MMU are

e Pagetables

e The Translation Lookaside Buffer (TLB)
e Domains and access permission

e Caches and write buffer

e The CP15:cl control register

e The Fast Context Switch Extension

Memory Management Unit (MMU)

When creating a multitasking embedded system, it makes sense to have an easy way to
write, load, and run independent application tasks. Many of today’s embedded systems use an
operating system instead of a custom proprietary control system to simplify this process. More
advanced operating systems use a hardware-based memory management unit (MMU).

One of the key services provided by an MMU is the ability to manage tasks as indepen-
dent programs running in their own private memory space. A task written to run under the
control of an operating system with an MMU does not need to know the memory requirements of
unrelated tasks. This simplifies the design requirements of individual tasks running under the
control of an operating system.

The processor cores with memory protection units. These cores have a single addressable
physical memory space. The addresses generated by the processor core while running a task are
used directly to access main memory, which makes it impossible for two programs to reside in
main memory at the same time if they are compiled using addresses that overlap. This makes
running several tasks in an embedded system difficult because each task must run in a distinct
address block in main memory.

The MMU simplifies the programming of application tasks because it provides the
resources needed to enable virtual memory—an additional memory space that is indepen- dent of
the physical memory attached to the system. The MMU acts as a translator, which converts the
addresses of programs and data that are compiled to run in virtual memory to the actual physical
addresses where the programs are stored in physical main memory. This translation process
allows programs to run with the same virtual addresses while being held in different locations in
physical memory.

This dual view of memory results in two distinct address types: virtual addresses and physical
addresses. Virtual addresses are assigned by the compiler and linker when locating a program in
memory. Physical addresses are used to access the actual hardware components of main memory
where the programs are physically located.

ARM provides several processor cores with integral MMU hardware that efficiently support
multitasking environments using virtual memory. The goal of this chapter is to learn the basics of
ARM memory management units and some basic concepts that underlie the use of virtual
memory.

Virtual Memory Works

In an MMU, tasks can run even if they are compiled and linked to run in regions with
overlapping addresses in main memory. The support for virtual memory in the MMU enables the
construction of an embedded system that has multiple virtual memory maps and a single physical
memory map. Each task is provided its own virtual memory map for the purpose of compiling
and linking the code and data, which make up the task. A kernel layer then manages the
placement of the multiple tasks in physical memory so they have a distinct location in physical
memory that is different from the virtual location it is designed to run in.

To permit tasks to have their own virtual memory map, the MMU hardware performs address
relocation, translating the memory address output by the processor core before it reaches main
memory. The easiest way to understand the translation process is to imagine a relocation register
located in the MMU between the core and main memory.

Virtual Physical

memoty memory
Base Offset
Virmal [220400 | 00e3 | Task 1 ,
address B - 0x0B0000e3 ase
relocation 0x0B000000
register
Task 1

Page 4 (y040000e3 | FEBiOD 00800
004000000 } Offset
00200 E_

Translated Physical
address adﬁress

When the processor core generates a virtual address, the MMU takes the upper bits of the
virtual address and replaces them with the contents of the relocation register to create a physical
address, shown in above Figure.

The lower portion of the virtual address is an offset that translates to a specific address in
physical memory. The range of addresses that can be translated using this method is limited by
the maximum size of this offset portion of the virtual address.

The above Figure shows an example of a task compiled to run at a starting address of
0x4000000 in virtual memory. The relocation register translates the virtual addresses of Task 1
to physical addresses starting at 0x8000000.

A second task compiled to run at the same virtual address, in this case 0x400000, can be
placed in physical memory at any other multiple of 0x10000 (64 KB) and mapped to 0x400000
simply by changing the value in the relocation register.

A single relocation register can only translate a single area of memory, which is set by the
number of bits in the offset portion of the virtual address. This area of virtual memory is known
as a page. The area of physical memory pointed to by the translation process is known as a page
frame.

The relationship between pages, the MMU, and page frames shows in below figure. The
ARM MMU hardware has multiple relocation registers supporting the translation of virtual
memory to physical memory. The MMU needs many relocation registers to effectively support
virtual memory because the system must translate many pages to many page frames.

Virtual MMU Physical

memory memory
Translation
lookaside
buffer
Page
| tables
-
= |
. PTE
[y Belocation
< register
e - J—‘
Page Page
frame

Regions Using Pages

virtual memory has a corresponding entry in a page table, a block of virtual memory
pages map to a set of sequential entries in a page table. Thus, a region can be defined as a
sequential set of page table entries. The location and size of a region can be held in a software
data structure while the actual translation data and attribute information is held in the page tables.

An example of a single task that has three regions: one for text, one for data, and a third
to support the task stack. Each region in virtual memory is mapped to different areas in physical
memory. In the figure, the executable code is located in flash memory, and the data and stack
areas are located in RAM. This use of regions is typical of operating systems that support sharing
code between tasks.

With the exception of the master level 1 (L1) page table, all page tables represent 1 MB
areas of virtual memory. If a region’s size is greater than 1 MB or crosses over the 1 MB
boundary addresses that separate page tables, then the description of a region must also include a
list of page tables. The page tables for a region will always be derived from sequential page table
entries in the master L1 page table. However, the locations of the L2 page tables in physical
memory do not need to be located sequentially.

Virtual Physical

memory memory
Page
tables B
Stack =
CRegion 3 + -
: - RAM
Data .
Region 2 . -
z —
Text ['_._-,- =
=k
Region 1 L -
o 3
Page PTE s) [Flash
Page
frame -

Multitasking and the MMU

Page tables can reside in memory and not be mapped to MMU hardware. One way to
build a multitasking system is to create separate sets of page tables, each mapping a unique
virtual memory space for a task. To activate a task, the set of page tables for the specific task and
its virtual memory space are mapped into use by the MMU. The other sets of inactive page tables
represent dormant tasks. This approach allows all tasks to remain resident in physical memory
and still be available immediately when a context switch occurs to activate it.

By activating different page tables during a context switch, it is possible to execute
multiple tasks with overlapping virtual addresses. The MMU can relocate the execution address
of a task without the need to move it in physical memory. The task’s physical memory is simply
mapped into virtual memory by activating and deactivating page tables. Figure 14.4 shows three
views of three tasks with their own sets of page tables running at a common execution virtual
address of 0x0400000.

In the first view, Task 1 is running, and Task 2 and Task 3 are dormant. In the second
view, Task 2 is running, and Task 1 and Task 3 are dormant. In the third view, Task 3 is running,
and Task 1 and Task 2 are dormant. The virtual memory in each of the three views represents
memory as seen by the running task. The view of physical memory is the same in all views
because it represents the actual state of real physical memory.

Virtual Page Physical Virtual Page Physical Virtual Page Physical

memory tables mMemory memory tables Memory memory tables MEmory
—

Task 3 Task 3 Task 3 Task 3 L Task 3 Hw Task 3

Task 1 Task 2 Task 2 Task 2 |4 Task 2 B Task 2 Task 3 J Task 2 Task 2

—|—.- Task 1 H—» Task 1

Task 1 Task 1 Task 1

I I
Q400000 Q400000 (400000
Task 1 running Task 2 running Task 3 running

Active Dormant

To switch between tasks requires the following steps:

e Save the active task context and place the task in a dormant state.

e Flush the caches; possibly clean the D-cache if using a writeback policy.

e Flush the TLB to remove translations for the retiring task.

e Configure the MMU to use new page tables translating the virtual memory execution area
to the awakening task’s location in physical memory.

¢ Restore the context of the awakening task.

e Resume execution of the restored task.

Memory Organization in a Virtual Memory System

Typically, page tables reside in an area of main memory where the virtual-to-physical
address mapping is fixed. By “fixed,” we mean data in a page table doesn’t change during normal
operation, as shown in below Figure. This fixed area of memory also contains the operating
system kernel and other processes. The MMU, which includes the TLB shown in Figure 14.5, is
hardware that operates outside the virtual or physical memory space; its function is to translate
addresses between the two memory spaces.

When a context switch occurs between two application tasks, the processor in reality
makes many context switches. It changes from a user mode task to a kernel mode task to perform
the actual movement of context data in preparation for running the next applica- tion task. It then
changes from the kernel mode task to the new user mode task of the next context.

By sharing the system software in a fixed area of virtual memory that is seen across all
user tasks, a system call can branch directly to the system area and not worry about needing to
change page tables to map in a kernel process. Making the kernel code and data map to the same
virtual address in all tasks eliminates the need to change the memory map and the need to have

an independent kernel process that consumes a time slice.

Virtual
memory

System
software

Fixed address
memory area

Task

Details of the ARM MMU

Drvnamic address
memory area

Physical
memory

System
software
Page

=4 tables

Task 1

Task 3

» Task 2

The ARM MMU performs several tasks: It translates virtual addresses into physical
addresses, it controls memory access permission, and it determines the individual behav- ior of
the cache and write buffer for each page in memory. When the MMU is disabled, all virtual
addresses map one-to-one to the same physical address. If the MMU is unable to translate an
address, it generates an abort exception. The MMU will only abort on translation, permission,

and domain faults.

The main software configuration and control components in the MMU are

e Pagetables

e The Translation Lookaside Buffer (TLB)

e Domains and access permission
e Caches and write buffer
e The CP15:cl control register

e The Fast Context Switch Extension

Page Tables

The ARM MMU hardware has a multilevel page table architecture. There are two levels of page

table: level 1 (L1) and level 2 (L2).

There is a single level 1 page table known as the L1 master page table that can contain two

types of page table entry. It can hold pointers to the starting address of level 2 page tables, and
page table entries for translating 1 MB pages. The L1 master table is also known as a section
page table.

The master L1 page table divides the 4 GB address space into 1 MB sections; hence the L1
page table contains 4096 page table entries. The master table is a hybrid table that acts

Tahble Page tables used by the MMU.

Memory consumed Numberof page
Name Type by page table (KB) Page sizes supported (KB) table entries
Master/section level 1 16 1024 4096
Fine level 2 4 1,4, or 64 1024
Coarse level 2 1 4 or 64 256

as both a page directory of L2 page tables and a page table translating 1 MB virtual pages called
sections. If the L1 table is acting as a directory, then the PTE contains a pointer to either an L2
coarse or L2 fine page table that represents 1 MB of virtual memory. If the L1 master table is
translatingal MB section, then the PTE contains the base address of the 1 MB page frame in
physical memory. The directory entries and 1 MB section entries can coexist in the master page
table.

A coarse L2 page table has 256 entries consuming 1 KB of main memory. Each PTE in a
coarse page table translatesa4 KB block of virtual memory toa4 KB block in physical memory. A
coarse page table supports either 4 or 64 KB pages. The PTE in a coarse page contains the base
address to eitherad or 64 KB page frame; if the entry translates a 64 KB page, an identical PTE
must be repeated in the page table 16 times for each 64 KB page.

A fine page table has 1024 entries consuming 4 KB of main memory. Each PTE in a fine page
translatesal KB block of memory. A fine page table supports 1, 4, or 64 KB pages in virtual
memory. These entries contain the base address of a 1, 4, or 64 KB page frame in physical
memory. If the fine table translatesa4 KB page, then the same PTE must be repeated 4
consecutive times in the page table. If the table translates a 64 KB page, then the same PTE must
be repeated 64 consecutive times in the page table.

Level 1 Page Table Entries

The level 1 page table accepts four types of entry:

e A1 MB section translation entry

e A directory entry that points to a fine L2 page table

e Adirectory entry that points to a coarse L2 page table
e A fault entry that generates an abort exception

31 2019 12111008 543210

) Base address SBZ AP | 0| Domam|1|C|H1|0
Section entry
31 1098 543210
Coarse page table Baseaddress 0| Domam|1|SB4 0)1
31 1211 9% 543210
Baseaddress SBZ | Domain|1(3BZ]1|1
Fine page table
31 210
Fault 0|0

SBZ=:zhould be zero

Level 2 Page Table Entries

e There are four possible entries used in L2 page tables:

e A large page entry defines the attributes for a 64 KB page frame.
e A small page entry definesa4 KB page frame.
e A tiny page entry definesal KB page frame.

e A fault page entry generates a page fault abort exception when accessed.

31 1615 1211109876543210
Iargepage Base physical address SBZ |AP3|AP2|AP1APOC|B|O
3 1211109876543210
Smallpage Baszephysical address AP3|AP2|APIAPD|C| B[1
31 109876543210
Tinv page Basephysical address SBZ |AFP(C|B|1
31 210
Page fault 0

SBZ=zhould be zero

The Translation Lookaside Buffer

The TLB is a special cache of recently used page translations. The TLB maps a virtual
page to an active page frame and stores control data restricting access to the page. The TLB is a
cache and therefore has a victim pointer and a TLB line replacement policy. In ARM processor
cores the TLB uses a round-robin algorithm to select which relocation register to replace on a
TLB miss.

The TLB in ARM processor cores does not have many software commands available to
control its operation. The TLB supports two types of commands: you can flush the TLB, and you
can lock translations in the TLB.

During a memory access, the MMU compares a portion of the virtual address to all the
values cached in the TLB. If the requested translation is available, it is a TLB hit, and the TLB
provides the translation of the physical address.

If the TLB does not contain a valid translation, it isa TLB miss. The MMU automatically
handles TLB misses in hardware by searching the page tables in main memory for valid
translations and loading them into one of the 64 lines in the TLB. The search for valid
translations in the page tables is known as a page table walk. If there is a valid PTE, the
hardware copies the translation address from the PTE to the TLB and generates the physical
address to access main memory. If, at the end of the search, there is a fault entry in the page
table, then the MMU hardware generates an abort exception.

During a TLB miss, the MMU may search up to two page tables before loading data to
the TLB and generating the needed address translation. The cost of a miss is generally one or two
main memory access cycles as the MMU translation table hardware searches the page tables. The
number of cycles depends on which page table the translation data is found in. A single-stage
page table walk occurs if the search ends with the L1 master page table; there is a two-stage page
table walk if the search ends with an L2 page table.

Single-Step Page Table Walk

20 19 o
Wirtual
address Base Orffset
T A
L1 master page table
4095
Page
table
entry”
5 3
4
— 3 [1] o
2
1
o
Translation table |
base address
Selects
31 & 2019 d 0 phvsical
Phyvsical EELOT.

address Offset

L Copied to TLEB

Two-Step Page Table Walk

If the MMU ends its search for a page that is 1, 4, 16, or 64 KB in size, then the page
table walk will have taken two steps to find the address translation. the two-stage process for a
translation held in a coarse L2 page table. Note that the virtual address is divided into three parts.

In the first step, the L1 offset portion is used to index into the master L1 page table and
find the L1 PTE for the virtual address. If the lower two bits of the PTE contain the binary value
01, then the entry contains the L2 page table base address to a coarse page

In the second step, the L2 offset is combined with the L2 page table base address found in
the first stage; the resulting address selects the PTE that contains the translation for the page. The
MMU transfers the data in the L2 PTE to the TLB, and the base address is combined with the
offset portion of the virtual address to generate the requested address in physical memory.

31 20 19 12 11 0
Virtual 2
address L1 offset L2 offset Page offset
i A A g
Step 1 T
L1 master page table
4005
Step 2
L1 page i
table entry
5 ? Coarse
3 L2 page table Lo paEc
: 255
L3 m | 0 |1 tablg entry
2 :
1
0 — =2
1
U.—
Teansiation tabl L2 page table
ranslation table
base address base address
Selects
31) 1211 Y 0 physical
Physical ; — :
\ddree | Physical base Page offset
L J

T = (Copied to TLB

Domains and Memory Access Permission

There are two different controls to manage a task’s access permission to memory: The
primary control is the domain, and a secondary control is the access permission set in the page
tables.

Domains control basic access to virtual memory by isolating one area of memory from
another when sharing a common virtual memory map. There are 16 different domains that

Commands to access the TLE lockdown registers.

Command MCRinstruction Valuein Rd Core support

Read DTLB MRC p15,0,Rd, c10, c0, 0 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,

lockdown ARM1022E, ARM1026EJ-S, StrongARM,

Write DTLB MCR p15, 0, Rd, c10, ¢0, 0 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,

lockdown ARM1022E, ARM1026EJ-S, StrongARM,
X5cale

ReadITLE NRC p15, 0, Rd, ¢10, =0, 1 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,

lockdown ARMI022E, ARM1026EJ-5, StrongARM,
XScale

Write ITLB WCR pl5,0,Rd, ¢10, c0, 1 TLB lockdown ARM920T, ARM922T, ARM926EJ-S,

lockdown ARMI1022E.ARMI1026EJ-S, StrongARM,
XScale

APRMMOZOT, ARMOZIT ARMOZEE]-S, ARMICIIE

31 2625 2019 10
Basze Victim SBZ P
ABRMI0Z6EI-S
3l o2 2625 10
SEZ WVictim SEZ P

SBE = should be zero

can be assigned to 1 MB sections of virtual memory and are assigned to a section by
setting the domain bit field in the master L1 PTE (see Figure 14.6).

When a domain is assigned to a section, it must obey the domain access rights assigned to
the domain. Domain access rights are assigned in the CP15:c3 register and control the processor
core’s ability to access sections of virtual memory.

The CP15:c3 register uses two bits for each domain to define the access permitted for
each of the 16 available domains. Table 14.5 shows the value and meaning of a domain access
bit field. Figure 14.12 gives the format of the CP15:c3:c0 register, which holds the domain
access control information. The 16 available domains are labeled from DO to D15 in the figure.

Even if you don’t use the virtual memory capabilities provided by the MMU, you can still
use these cores as simple memory protection units: first, by mapping virtual memory directly to

physical memory, assigning a different domain to each task, then using domains to protect
dormant tasks by assigning their domain access to “no access.”

Domain access bit assignments.

Access Bitfield value Comments
Manager 11 access is uncontrolled, no permission aborts generated
Reserved 10 unpredictable
Client 01 access controlled by permission values set inPTE
Noaccess 00 benerates adomain fault

302826 2422 201816 1412108 & 4 2 0

D15D14D13D12|D

—

1|10 Do | DE|\ D7 | D6| D5 | D4| D3| D2 D1 DO

Format of the domain access control register CP15:c3.

Access permission and control bits.

Privileged mode User mode AP bit field System bit Rombit
Read and write read and write 11 ignored ignored
Read and write read only 10 ignored ignored
Read and write no access 01 ignored ignored
No access N0 access 00 0 0
Read only read only 00 0 1
Read only N0 Access 0o 1 0
Unpredictable unpredictable 00 1 1

The Fast Context Switch Extension

The Fast Context Switch Extension (FCSE) is additional hardware in the MMU that is
considered an enhancement feature, which can improve system performance in an ARM
embedded system. The FCSE enables multiple independent tasks to run in a fixed overlap- ping
area of memory without the need to clean or flush the cache, or flush the TLB during a context
switch. The key feature of the FCSE is the elimination of the need to flush the cache and TLB.

Without the FCSE, switching from one task to the next requires a change in virtual
memory maps. If the change involves two tasks with overlapping address ranges, the infor-
mation stored in the caches and TLB become invalid, and the system must flush the caches and
TLB. The process of flushing these components adds considerable time to the task switch
because the core must not only clear the caches and TLB of invalid data, but it must also reload
data to the caches and TLB from main memory.

With the FCSE there is an additional address translation when managing virtual mem-
ory. The FCSE modifies virtual addresses before it reaches the cache and TLB using a special

relocation register that contains a value known as the process ID. ARM refers to the addresses in
virtual memory before the first translation as a virtual address (VA), and those addresses after the
first translation as a modified virtual address(tMVA), shown in Figure 14.4. When using the
FCSE, all modified virtual addresses are active. Tasks are protected by using the domain access
facilities to block access to dormant tasks. We discuss this in more detail in the next section.

Switching between tasks does not involve changing page tables; it simply requires
writing the new task’s process ID into the FCSE process ID register located in CP15. Because a
task switch does not require changing the page tables, the caches and TLB remain valid after the
switch and do not need flushing.

When using the FCSE, each task must execute in the fixed virtual address range from
0x00000000 to Ox1FFFFFFF and must be located in a different 32 MB area of modified virtual
memory. The system shares all memory addresses above 0x2000000, and uses domains to
protect tasks from each other. The running task is identified by its current process ID.

To utilize the FCSE, compile and link all tasks to run in the first 32 MB block of virtual
memory (VA) and assign a unique process ID. Then place each task in a different 32 MB
partition of modified virtual memory using the following relocation formula:

MVA= VA + (0x2000000 = process ID)
To calculate the starting address of a task partition in modified virtual memory, take a
value of zero for the VA and the task’s process ID, and use these values in Equation.
The value held in the CP15:¢13:c0 register contains the current process ID. The process
ID bit field in the register is seven bits wide and supports 128 process IDs. The format of the
register.

Modified
Wirtual Domain virtual Caches Phys=ical
MEmory FCSE access memory and TLB memory
Kams] _
Kernel clismt * Kemel 1 | Kemel
ACCa55 . o KE’I‘ﬂE‘l il
Task3
moaccass | [Task 3 | Task 3 __'+ Task 3
O B000000 Tk 2 Tfl:k:
alias Specisl | b| acemss ||| T2k2 Task 1
04000000 e = L Task 2 H
register no ::{ass A Task 1
0x2000000 Tasg 2 Process L Task 1 {or=| Task2
(32 MB) nmning D

Task 2 running

Moditied

Virtual Domain virtual Caches Physical
memory FCSE access memory and TIB mMEemory
Kemel Kemel 1| Kernel | Kernel
BCCE55 1* KE’I‘ﬂ_El |
Task?
Task 3
026000000 noscesss | [X) Task 3 |l g 3 117
P Tk | [
ralocalion . a 2
024000000 ragistar hoacess L Tasie o W | Task 1
Task 1 Task 1
alias e cliant o Task 1
0x 2000000 g7 Process _J = l.p Task 1 B Task 2
(32 MB) mnning 1D

Task 1 mnning

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)
M. Tech — (VLSI & Embedded Systems)
(R18D6803) EMBEDDED SYSTEM DESIGN

Internal Marks Assessment

MID-I MID-II
S.No. ROLL NO. Name of the Student
1 19N31D6801 | ADEPU HARI PRIYA 26 12
27 27
2 19N31D6802 | ALGAPALLY SANTOSH SAGAR
12 26
3 19N31D6803 | BADDAM SINDHU REDDY
12 24
4 19N31D6804 | BANGARIGALLA SHEKARBABU
5 19N31D6805 | CHIPPA PRITHVI RAJ 21 23
26 23
6 19N31D6806 | DANAVATH NAGAMMA
7 19N31D6807 | DEETI ADIKYA 26 27
26 24
8 19N31D6808 | DOKKU VARA LAKSHMI
26 28
9 19N31D6809 | GADHARI KEERTHANA
26 26
10 19N31D6810 | GEDDADA SANDEEP VARMA
KATTA VIDUSHEE KUMARI VISHWA 25 26
11 19N31D6811 KARMA
12 19N31D6812 | KODE SASIKALA 23 24
13 19N31D6813 | KUNDETI MAMATHA 27 22
24 26
14 19N31D6814 | NAGANABOINA SUMAN
15 19N31D6815 | POLAPALLI MANASA 22 24
16 19N31D6816 | POLAPALLI SRIKANTH 26 27
24 23
17 19N31D6817 | SAIKUMAR KURAKULA

18 19N31D6818 | SANDEEP BALLEM 24 24
20 20
19 19N31D6819 | SIDDA MANOJ KUMAR REDDY
20 19N31D6820 | SUNKARIJASNAVI 28 28
19 24
21 19N31D6821 | TALLURI SAI PRIYANKA
12 26
22 19N31D6822 | TALLURI VENKATA RESHMA
21 22
23 19N31D6823 | VENKATREDDY GARI PRATHAP REDDY
24 19N31D6824 | VUTUKURI ANUSHA 22 23

R18

Code No: R18D6803
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution — UGC, Govt. of India)

M.Tech | Year - | Semester Regular/Supplementary Examinations, January-2020
Embedded System Design(VLSI&ES)

Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from
each SECTION and each Question carries 14 marks.

% %k %k k

SECTION-1

1 a) Discuss about various types of ARM Registers. [7M]
b) Describe about the instruction pipeline.

[7m]
OR
2 a) Explain about the interrupts and vector table of ARM. [7M]
b) Explain about the architecture revision. [7M]
SECTION-II
3 a) Explain about the addressing modes of ARM. [7M]
b) With a suitable example, explain about the PSR instructions.
[7m]

OR

4 Why do we use controllers in embedded systems? Explain the [14M]

instruction set of ARM programming model-1.

b)

b)

b)

b)

b)

SECTION-1II

What is the difference between instruction set and thumb
instruction set?

Explain about the Branch instructions and register usage
instructions.

OR

Discuss about Software Interrupt Instructions
Explain about Single-Register and Multi Register Load-Store
Instructions

SECTION-IV

Explain about the conditional execution and loops in ARM
programming with a suitable example.

With a suitable example, explain about the assembly code
using instruction scheduling in ARM programming.

OR

Explain about ARM programming with one example.

Describe about the integer and floating point with a suitable
example.

SECTION-V

Explain about the Memory management unit and page tables.

Explain about the cache architecture in memory
management.

OR

[7M]

[7M]

[6M]

[(8Mm]

[7m]

[7m]

[7m]

[7m]

[7m]

[7m]

10 Write a short notes on
(i) Context switch and Register allocation [7M]
(ii) Flushing and cashes [7 M]

3k 3k 3k 3k %k %k ok %k %k k

Code No: R17D9303

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

R17

M.Tech I-Year - | Semester Regular/Supplementary Examinations, Dec-18/Jan 19

Embedded System Design
(VLSI&ES)

Roll No

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each

SECTION and each Question carries 14marks.

% %k %k %k %k

SECTION-I

1 a. Describe the complete ARM register set ?
b. Describe the conditional flags of ARM processor?

OR

2 a. Describe the ARM nomenclature and architecture evaluation ?
b. Describe the pipelining execution process in ARM ?

SECTION-11
3 Describe various addressing modes in ARM ?
OR
4 Describe load-store instruction in detail ?

[7m]

[7m]

[7m]

[7m]

[14M]

[14M]

10

SECTION-III
Explain various thumb data processing instruction ?
OR
Explain with example single-register and multiple-register load-store instruction?
SECTION-IV
Explain pointer aliasing with an example?
Explain with example conditional execution ?
OR

ARMOTDMI processor performs various operations in parallel explain them in detail?
What is pipeline interlock explain with example ?

SECTION-V

How is memory organised in MMU?
Explain access permission in memory management

OR
Explain flush and clean operation in cache?

What are the main software configuration and control components in MMU? Explain
in detail any two?

kkkkkkkkkk

[14M]

[14M]

[7M]

[7M]

[10M]

[4m]

[7m]

[7m]

[7m]

[7m]

R15

Code No: R15D9303

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution — UGC, Govt. of India)
M.Tech I-Year - | Semester Supplementary Examinations, Dec-18/Jan-19

Embedded System Design
(VLSI&ES & SSP)

Roll No

Time: 3 hours Max. Marks: 75

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from
each SECTION and each Question carries 15 marks.

% %k % %k ok

SECTION-I

1 a) With a neat sketch discuss ARM programming model. [15M]
b) What do you mean by pipelining? Briefly discuss about five stage pipeline in
ARM.
OR

2 Explain how to measure the processor performance of an embedded hardware in [15M]
detail and explain the major application areas of embedded system.
SECTION-1I

3 a)Explain Load, store instructions with examples. [15M]
b) What is the primary difference between a load/store architecture and a
register/memory architecture

OR
4 a) What are the unique features of the ARM instruction set? Explain [7M]
b) Briefly explain the ARM data processing instructions in detail with suitable
example. [8M]
SECTION-III
5 Explain processor modes of ARM7 , also specify different branch instruction used to [15M]

exchange branch from ARM mode to THUMB mode.

10

OR
Draw the format of ARM data processing instructions
Explain the various data operations in ARM.
SECTION-IV

a) Explain the different features of FPA10.
b) Discuss the coprocessor Register transfer instructions? Why the instruction cannot
used for Register transfer of CP15 coprocessor.

OR
Briefly explain the functions, pointers and structures using in ARM C programming
SECTION-V

a) With a neat diagram discuss set associate cache and fully associative cache.
b) Elaborate advantages of having embedded memory on chip? How it is useful in
increasing the efficiency of the system.

OR

What are the different types of memories used in embedded system design? Explain
each with examples.

%ok sk ok ok sk ok kk ok

[15M]

[15M]

[15M]

[15M]

[15M]

	Current Program Status Register
	ARM Processor Families
	ARM9 Family
	ARM10 Family
	ARM11 Family
	Specialized Processors

	Branch Instructions
	Load-Store Instructions
	Single-Register Transfer
	Single-Register Load-Store Addressing Modes
	Multiple-Register Transfer

	Conditional Execution
	Thumb Register Usage
	Other Branch Instructions
	Basic C Data Types
	Function Argument Types

	C Looping Structures
	Loops with a Fixed Number of Iterations

	Structure Arrangement
	Basic Operation of a Cache Controller
	Details of the ARM MMU
	Page Tables
	Level 1 Page Table Entries
	Level 2 Page Table Entries
	 There are four possible entries used in L2 page tables:
	 A large page entry deﬁnes the attributes for a 64 KB page frame.
	 A small page entry deﬁnesa4 KB page frame.
	 A tiny page entry deﬁnesa1 KB page frame.
	 A fault page entry generates a page fault abort exception when accessed.

